Executive Constraints and Economic Growth Erick Alvarez Barreno[†] This version: January 19, 2025 Abstract Despite extensive research on the relationship between democracy and development, the features of democracy that are particularly important for this outcome remain unclear. Here, I unpack the democracy-growth link by examining the economic effects of two forms of executive constraints: horizontal constraints, the power of the parliament to control the executive, and vertical constraints, the capacity of citizens to keep rulers accountable through competitive elections. Using dy- namic panel models, I demonstrate that each constraint influences growth through a specific mechanism. Horizontal constraints are strongly associated with greater private investment, whereas vertical constraints significantly improve living condi- tions through increasing education, health and public spending. Contrary to the conventional wisdom that horizontal constraints on rulers are the most important condition for growth, I show that vertical constraints are the driving force through which democracy improves economic development. **Keywords:** Democracy, executive constraints, institutions, economic growth [†]Department of Comparative Politics, University of Bergen. Email: erick.alvarez-barreno@uib.no 1 #### Introduction A rapidly accumulating body of evidence points towards democracy as a fundamental cause of growth (Acemoglu et al. 2019; Colagrossi, Rossignoli, and Maggioni 2020; Knutsen 2021; Gerring, Knutsen, and Berge 2022). The proponents of this argument claim that democratic institutions secure property rights, produce steady economic policies, and promote greater investment in physical and human capital (North 1990; Knutsen 2013). Yet, empirical analyzes produce contradictory results on the relationship between democracy and development, ranging from negative (Barro 1996) to no significant correlation (Przeworski et al. 2000; Gerring et al. 2005; Doucouliagos and Ulubaşoğlu 2008). In response to these results, scholars have increasingly focused on specific features of democratic governance, including forms of government and electoral rules (Persson and Tabellini 2005), party strength (Bizzarro et al. 2018), bureaucracies (Cornell, Knutsen, and Teorell 2020), or executive constraints (Cox and Weingast 2018). Although scholars now agree that democracy matters, questions remain as to which democratic institution(s) matter the most for development. Much of the work that examines the effect of different forms of democratic institutions has focused on executive constraints. A particularly prominent line of research has posited that horizontal constraints on the executive, such as legislatures, are a sufficient condition for economic growth by increasing capital investment (North and Weingast 1989). Related work argues that another form of executive constraints, vertical constraints linked to institutions of electoral democracy, can even threaten property rights and thereby growth by generating pressures for the equitable distribution of wealth (Przeworski and Limongi 1993). Many scholars dissent from this argument, suggesting that free and fair elections shift government policy towards the preferences of the majority (Acemoglu and Robinson 2005). As a result, vertically constrained governments adopt policies that enhance the provision of public goods such as education and health, improving the living conditions of most of the population, and thus facilitating economic growth (Besley and Kudamatsu 2006; Wang, Mechkova, and Andersson 2019; Gerring et al. 2021). In this article, I explicitly examine and compare the relationship between economic growth and vertical and horizontal constraints. Covering a panel of 183 countries from 1950 to 2020, my results challenge the conventional wisdom that horizontal constraints are the primary mechanism linking democracy to better economic performance. Although horizontal constraints increase capital investment - in line with theoretical expectations - my analyses reveal that horizontal constraints do not significantly increase the levels of real GDP per capita in either the short or long term, after controlling for the effects of vertical constraints. Instead, I find strong evidence that vertical constraints facilitate growth, even after controlling for horizontal constraints: vertical constraints increase real GDP per capita by roughly one percent in the short run and 31 in the long run. My analyses also test a plausible explanation for this relationship, in line with that of the literature: vertical constraints have a strong positive relationship with human capital development, increasing education levels and public spending while reducing infant mortality rates. These results hold regardless modeling choices about variables, controls, samples and dynamic panel model assumptions. Cumulatively, these findings suggest that electoral contestation - not horizontal accountability - is the primary force through which democracy improves economic and human development. #### 1 Two forms of executive constraints Executive constraints are institutions that reduce rulers' discretionary use of power. These institutions can take two forms. Horizontal constraints provide checks on executive's behavior by splitting the power of the government into relatively autonomous branches, and thus take the form of legislative control over the executive or an independent judiciary with legal instruments to review rulers' decisions. On the other hand, vertical constraints hold leaders accountable to their citizens through contested multiparty elections and extensive franchise rights (Dahl 1971). Institutions providing electoral oversight allow for vertical accountability, in which citizens can evaluate and accordingly sanction their rulers.¹ Both of these constraints have distinct links to development: horizontal constraints can facilitate financial development, whereas vertical constraints enhance public good provision and thereby human development. #### 1.1 Investment without electoral democracy? A large body of scholarship examines the role of horizontal constraints in establishing the incentives for financial development. North and Weingast (1989) suggest that the introduction of a Parliament with binding powers discouraged the English Crown from engaging in predatory behavior after the Glorious Revolution. Other work generalizes this argument suggesting that these institutions give investors a "credible signal that the state will not confiscate investment returns via taxation or frequent policy changes" (Wright 2008, 336). Accordingly, scholars have found that horizontal constraints positively influence private investment (Stasavage 2002; Wright 2008), while other authors suggest that they mitigate the investment downturns produced by electoral cycles (Canes-Wrone and Park 2014; Canes-Wrone, Ponce de León, and Thieme 2023). The cornerstone of the "commitment" argument is that institutions providing horizontal checks on rulers protect property rights, which generates a more predictable business environment. Investors require certainty that they can own the benefits of their productive operations once earned. This connection has led some scholars to argue that as long as there is some credible commitment institution, there is no need for other democratic features to ensure prosperity. Indeed, there is a long tradition of political philosophers and scientists considering democratic institutions outside of horizontal constraints as a *threat* to property rights protection. In their view, electoral democracy generates demands for immediate public consumption, threatening the profits of capital holders, which reduces investment and retards growth (Przeworski and Limongi 1993). These arguments indicate that horizontal constraints should be positively correlated ^{1.} Boese et al. (2022) argue that in addition to contestation and participation, constraints on rulers are a key dimension of democracy. My approach treats both the contestation and participation dimensions of democracy as vertical constraints because they facilitate vertical accountability. Accordingly, vertical constraints include both the right to compete for votes for public office (contestation) and the right to vote in this competition (participation). Data: The World Bank and Polity IV Figure 1: The relationship between executive constraints and investment with investment. Indeed, scholars have found that the introduction of checks and balances increases private investment across countries (Stasavage 2002). However, this finding belies the fact that observations coded as having a strong legislature constraining the executive may also have strong participatory institutions providing electoral accountability. Consequently, the alleged impact of horizontal constraints could be absorbing not only the overall effect of democracy but also the potential impact of other sets of institutions. Figure 1 provides a nuanced picture of the relationship between executive constraints and investment in a sample of 169 countries between 1950 and 2018,² illustrating the isolated and combined impacts of the four possible combinations of vertical and horizontal constraints. Although country years with only horizontal constraints appear to have the higest levels of investment, this difference relies on a small number of observations. These results thus provide only weak support for the commitment literature. Interestingly, they also show a modest but statistically significant difference in the levels of investment be- ^{2.} I create dichotomous indicators for both types of constraints following Cox and Weingast (2018) and Acemoglu et al. (2019) using data from Polity IV. I provide a full description of these variables at the Data and Methods section. tween polities with only vertical and both constraints and polities with none of these institutions, suggesting that
vertical constraints are not detrimental for investment. #### 1.2 Electoral institutions in action While the relationship between democracy and private investment remains contested, there is less disagreement regarding the effects of vertical constraints on human capital. Studies have found a strong relationship between electoral democracy and outcomes such as life expectancy (Besley and Kudamatsu 2006) and greater social spending in health and education (Lindert 2004; Mulligan, Gil, and Sala-i-Martin 2004; Haggard and Kaufman 2020). Wang, Mechkova, and Andersson (2019) show that the quality of competitive elections consistently negatively affects infant mortality rates. Gerring et al. (2021) suggest that competitive elections are more strongly associated with human development than other aspects of democracy. Finally, Miller (2015) stresses that contested elections, both in autocracies and democracies, promote human development through health, education, gender equality, and civil liberties. Pinto and Timmons (2005) illustrate how vertical constraints influence human capital by reducing entry barriers to power and allowing citizens to register their preferences and select their leader. Electoral contestation shifts government policy towards the preferences of the median voter. Under inclusive institutions, the preferences of the median voter is aligned with a broader segment of the population, who would be more likely to demand goods with positive externalities, such as schools and health care. Therefore, leaders in such contested configurations must provide sufficient public goods or face electoral defeat. Voting can also be an accountability mechanism when politicians fail to meet citizens' welfare thresholds (Ferejohn 1986; 1999); they may align rulers' interests with those of their constituents (Barro 1973) or reduce potential predatory behavior (Benhabib and Przeworski 2010). Finally, participatory institutions can produce efficient resource allocation and better provision of public goods by solving collective action problems (Besley et al. 2005, 2007; Gonçalves 2014; Touchton, Wampler, and Peixoto 2021). Figure 2 provides no conclusive observational evidence that vertical constraints are Data: The World Bank and Polity IV Figure 2: The relationship between executive constraints and infant mortality Data: Maddison Project Database and Polity IV Figure 3: Overall contribution of executive constraints to economic growth associated with lower infant mortality rates, a common indicator to measure living conditions cross-nationally. Observations having only vertical constraints have indeed lower infant mortality rates than observations with no constraints, but there is no significant differences between country-years with only vertical or only horizontal constraints. However, configurations with both constraints are strongly associated with lower infant mortality rates than cases with only horizontal or vertical constraints, or neither form of constraints. These findings constitute evidence that vertical constraints can improve living conditions, but are more ambiguous about their strength in isolation. The empirical assessments presented in Sections 1.1 and 1.2 provide moderate evidence that there is a correlation between both horizontal and vertical constraints and the proposed mechanisms by which they facilitate development. Concerning the direct effect of both constraints on growth, Figure 3 indicates that, in isolation, horizontal constraints may not be as important as previous studies suggest (e.g. Cox and Weingast 2018). Figure 3 shows the direct contribution of each institutional configuration to economic growth, measured as the level of real GDP per capita in log points. Interestingly, there are no significant differences between only vertically and only horizontally constrained observations. However, countries with both constraints appear to have better economic performance than the rest of configurations. These observations show an empirically relevant interplay between both constraints. In isolation, each constraint perform a substitutory development role, enhancing a specific growth source such as physical investment and human capital. When combined, both constraints complement each other to reinforce the overall economic effect of democracy.³ ### 2 Data and Methods In this paper, I use these observational data to empirically assess the direct and indirect effects of executive constraints on economic development. Crucially, I use a modified version of Acemoglu et al. (2019) canonical model specification to first examine whether ^{3.} Appendix Figure A1 provides additional evidence for this claim. Accordingly, the interaction plot shows that there is no isolated significant correlation of horizontal constraints on growth, but there is a strong correlation of vertical constraints on such outcome. horizontal and vertical constraints have significant effects on growth itself, and then I assess the specific mechanisms by which these constraints are hypothesized to affect growth such as private investment, education enrollment, public spending and infant mortality. I construct a dataset covering 183 countries from 1900 to 2020, capturing information from 18962 country-year observations during the three waves of democratization. I restrict the baseline analysis to the period between 1950 to 2020 due to data availability and panel data modeling constraints. As my primary dependent variable, I use the natural logarithm of real gross domestic product (GDP) per capita, measured in 2011 U.S. dollars, obtained from the Maddison Project Database version 2023 (Bolt and Zanden 2024).⁴ This variable is available for 169 countries and the period up to 2022. Following Cox and Weingast (2018) and Acemoglu et al. (2019), I code a country as having horizontal constraints on the executive when there are institutional constraints imposing "substantial limitations" on the use of power by a country's chief executive, as measured by the Polity IV project (Marshall and Gurr 2020). Again following Cox and Weingast 2018, I code a country as having vertical constraints on the executive when at least one of the chief executives was elected by a competitive election according to Polity IV (Marshall and Gurr 2020). I use dichotomous indicators for both constraints to ease the interpretation of their potential effects on different economic outcomes, specially regarding their over-time effects: it is more intuitive to interpret short-term effects of having or not one kind of constraint, instead of a certain level of such institution.⁵ ^{4.} Level measures of GDP per capita are frequently used in economic research (e.g. Acemoglu et al. 2019). Although widely unnoticed, this decision may explain why economists tend to be more optimistic on the relationship between democracy and growth than political scientists (Cruz, Gerring and Knutsen 2024). ^{5.} Appendix Figure A2 shows that these variables strongly correlate with other alternative data sources for executive constraints such as V-Dem horizontal and vertical accountability indexes created by Lührmann, Marquardt, and Mechkova (2020). #### 2.1 Econometric model I use a dynamic linear regression model with unit and time-fixed effects, replicating the baseline model proposed by Acemoglu et al. (2019). Unit fixed effects absorb country-specific characteristics that do not vary over time, such as geography, natural resources, social norms, and even the long-term impact of colonization strategies that may have influenced both the economic and political development of countries (Papaioannou and Siourounis 2008). Unit-invariant time-fixed effects capture influences of global trends on growth common to all countries in the sample, such as the impacts produced by the two oil shocks that occurred in the 1970s (Cox and Weingast 2018). The following equation illustrates the model: $$y_{ct} = \alpha_c + \delta_t + \xi C_{ct} + \sum_{j=1}^{4} \gamma_j y_{ct-j} + \varepsilon_{ct}$$ (1) y_{ct} is the natural logarithm of real gross domestic product (GDP) per capita measured in 2011 U.S. dollars for country c and time t. α_c and δ_t are country and year-fixed effects. ξ is the impact of horizontal and/or vertical constraints C_{ct} based on Polity IV indicators, and γ_j reports coefficients for up to four lags of the dependent variable y_{ct-j} . Following Acemoglu et al. (2019), I include up to four lags of GDP per capita in the right-hand side of Equation 1. It is well known that growth outcomes such as GDP exhibit persistence over time, meaning that current values of GDP are influenced by their past values. While standard dynamic panel data analyses incorporate one or two lags to address such temporal dynamics, Acemoglu et al. (2019) include up to eight lags, assuming that there is a temporary dip in GDP occurring between four and five years before a democratization process as depicted in Appendix Figure A3. Accordingly, I also assume that there is a dip in GDP prior to "minor" political transitions characterized by changes in the presence of horizontal or vertical constraints. The four lags in my model thus account for both GDP dynamics, and the economic downturns that characterize such political transitions. ^{6.} Appendix Figures A4 and A5 present empirical evidence justifying this assumption. This dynamic panel model also assumes a standard sequential exogeneity, which implies that the error term is independent of past GDP as well as current and past values of constraints and covariates. This model thus requires sufficient GDP lags to eliminate the residual serial correlation in the error term. However, this inclusion also introduces two key econometric challenges: endogeneity and potential unobserved heterogeneity of past covariates. Even thought the latter is addressed by country-fixed effects, the model could have an asymptomatic bias of order 1/T, also
called the Nickel bias (Nickell 1981). Accordingly, past levels of GDP could be correlated with the error term (violating the exogeneity assumption), leading to biased and inconsistent estimates. To address these issues, I employ the Difference and System Generalized Method of Moments (GMM) estimators developed by Arellano and Bond (1991) and Blundell and Bond (1998), respectively. However, these estimators only provide additional robustness tests for the results in the within estimator since the temporal scale in my sample is fairly large (each country is observed 54.6 times on average), meaning that the dynamic panel bias is likely to be insignificant. #### 3 Estimation results Using the model in Equation 1, I report estimation results showing the empirically relevant interplay between executive constraints and economic development. The first set of analyses demonstrate that vertical - not horizontal - constraints correlate with growth overall. However, and consistent with the literature, a second set of analyses shows that both forms of constraints are correlated with relevant growth sources such as physical and human capital. These findings hold regardless modeling choices about variables, controls, samples and assumptions. Table 1 reports estimates of the effect of executive constraints on log real GDP per capita using the dichotomous measures of these constraints drawn from Polity IV. All columns show results including controls for a full set of country and year fixed effects and ^{7.} Appendix A3.2. provides a detailed discussion about sequential exogeneity. Appendix A3.3. discuss model sensitivity to different GMM assumptions. Table 1: The effect of executive constraints on (log) real GDP per capita | | Wi | thin estin | nates | Arellan | o-Bond | estimates | |--|-----------------|------------------|------------------|-----------------|-----------------|------------------| | | (1) | (2) | (3) | (4) | (5) | (6) | | Horizontal constraints | .380
(.207) | | 238
(.339) | 1.18
(.344) | | 113
(.433) | | Vertical constraints | | .605
(.236) | .787
(.382) | | 1.22
(.375) | 1.39
(.488) | | Log GDP, first lag | 1.17 $(.045)$ | 1.17
(.045) | 1.17 $(.045)$ | 1.13
(.046) | 1.13
(.046) | 1.14 $(.045)$ | | Log GDP, second lag | 114 $(.058)$ | 113
(.058) | 113 $(.058)$ | 102 $(.056)$ | 104 $(.056)$ | 107 $(.057)$ | | Log GDP, third lag | 019 $(.027)$ | 018
(.026) | 018
(.026) | 017 $(.025)$ | 017 $(.025)$ | 017 (.026) | | Log GDP, fourth lag | 060
(.018) | 060
(.018) | 060
(.018) | 054 (.019) | 053 (.019) | 056 $(.019)$ | | Effect after 25 years | 9.22
(5.17) | 14.65
(5.98) | 19.05
(9.45) | 22.14
(6.85) | 22.98
(7.11) | 27.75
(9.51) | | Long-run effect | 14.76
(8.78) | 23.48
(10.48) | 30.50
(15.91) | 28.00 (9.29) | 29.16
(9.60) | 36.28
(12.58) | | Persistence of GDP | .974
(.004) | .974
(.004) | .974
(.004) | .957
(.007) | .958
(.007) | .961
(.006) | | Unit root test t-statistics p-value (reject unit root) | -5.28 .00 | -5.35.00 | -5.39.00 | | | | | AR2 test p-value | | | | .104 | .132 | .159 | | Observations Countries in the sample | 8,519
156 | 8,519
156 | 8,519
156 | 8,362
156 | 8,362
156 | 8,362
156 | Note.— The table presents estimates of the effect of executive constraints on log real GDP per capita. Reported coefficients are multiplied by 100. Robust standard errors against heteroscedasticity and serial correlation at the country level are reported in parenthesis. All specifications are controlled for a full set of country and year fixed effects and four lags of log GDP per capita. Columns 1-3 report results using the within estimator, and columns 4-6 using the Arellano and Bond (1991) GMM estimator. The AR2 row reports the p-value for a test of serial correlation in the residuals of the GDP series, AR1 test p-value is omitted; still, all values are less than .00. The first two columns report long-run effects for horizontal and vertical constraints correspondingly, whereas the third column reports this effect for vertical constraints. four lags of log real GDP per capita. I multiply the reported coefficients by 100 to ease interpretation.⁸ I also report robust standard errors to account for heteroskedasticity and serial correlation at the country level in parentheses. Columns 1 through 3 describe results using the within estimator, and columns 4 through 6 using the Arellano and Bond (1991) GMM estimator. In the first two columns from each panel, I describe the long-run effects for horizontal and vertical constraints correspondingly, whereas in the third column I report this effect only for vertical constraints.⁹ In the model presented in Column 3 of Table 1, which includes both horizontal and vertical constraints, the presence of vertical constraints is estimated to be positive and significant, with a coefficient of .787 (standard error = .382).¹⁰ By contrast, horizontal constraints have weak and statistically insignificant relationship with GPD per capita. Indeed, even in models presented in Column 1 of Table 1, that estimate the relationship between horizontal constraints and growth in isolation, this effect is statistically insignificant. These results imply that introducing institutions providing electoral accountability increases real GDP per capita by roughly .8 percent in the short run, conditional on the negative but insignificant effect of horizontal constraints. Vertical constraints also consistently increase real GDP per capita by 30.5 percent in the long run (standard error = 15.91). ¹¹ Accordingly, even in the model presented in Column 2 of Table 1, which estimates the relationship of vertical constraints and GDP per capita in isolation, the effect of these constraints is slightly attenuated but remains statistically significant. The results reported using Arellano and Bond (1991) GMM estimator (Columns 4-6 in ^{8.} Because of Y's logarithmic transformation, the equation's functional form corresponds to a log-level model. The interpretation of β_1 follows the form $\%\Delta y = (100 \times \beta_1)\Delta x$ as described in Wooldridge (2020). ^{9.} Under sequential exogeneity, persistency and stationarity of the time series, I can estimate Equation 1 with the standard within estimator (Acemoglu et al. 2019). Consistent with the stationarity assumption, the AR2 row reports the p-value for a test of serial correlation in the residuals of the GDP series, the AR1 test p-value is omitted; still, all values are less than .00, suggesting that the time-series is stationary. ^{10.} Appendix A4.4. provides additional robustness including several additional covariates, such as log of population, log of population below 16 years old, trade volume as fractions of GDP, and a dichotomous measure of social unrest. ^{11.} Appendix Table A10 provides an additional robustness using a latent variable measure of GDP per capita based on the information from the most widely used indicators (Fariss et al. 2022). Main patterns remain insensitive, even when including an interaction term between both constraints and using a sample with all available data from the 20th century (see Appendix Tables A9 and A11). Table 1) provide an additional robustness to endogeneity concerns due to the inclusion of GDP lags. Patterns observed in the within estimator remain: vertical constraints increase growth, whereas the effect of horizontal ones is insignificant. #### 3.1 Long-run effects Here, I show how the cumulative long-run effects of executive constraints on growth are derived from Equation 1. This helps to differentiate the long-run effects between countries with cumulative years of having only horizontal or vertical constraints. My findings suggest that the long-run effect of horizontal constraints is negligible, whereas introducing vertical constraints has an consistently positive impact on long-run economic growth. Because Equation 1 describes a dynamic panel model, key coefficients are interpreted as contemporaneous effects. Thus, the cumulative long-run effects are obtained by iterating the short-run estimates based on the dynamics modeled in Equation 1. This effect is given by the following formula: $$\frac{\hat{\xi}}{1 - \sum_{j=1}^{4} \hat{\gamma}_j} \tag{2}$$ Where $\hat{\xi}$ denotes the parameter estimates of executive constraints, and $\hat{\gamma}$ denotes the parameter estimates of the lagged values of real GDP per capita. Applying this formula to the estimates in Column 3 of Table 1, my findings suggest that the introduction of institutions providing electoral accountability consistently increase real GDP per capita by roughly 31 per cent in the long run (standard error = 15.91). Remarkably, the presence of institutions providing horizontal accountability does not affect significantly long-term development. These findings are plotted in Figure 4, which shows the estimated log real GDP per capita change caused by transitions with vertical and horizontal constraints. Yearly effects are obtained by forward iteration of the estimated process modeled in Equation 2. As shown, countries with cumulative years of having vertical constraints experience consistent over-time growth, whereas countries with cumulative years of having horizontal constraints do not experience any significant change in their growth levels. Figure 4: Dynamic panel model estimates of the over-time effects of executive constraints on log real GDP per capita #### 3.2 The effect on sources of growth This final section examines whether there is a relationship between both types of constraints and several growth channels. Horizontal constraints should enhance growth through private investment, while vertical constraints should promote growth through human development indicators, such as education and health. I draw again on Acemoglu et al. (2019) to use the following dynamic
model to evaluate these potential mechanisms: $$m_{ct} = \alpha_c + \delta_t + \xi C_{ct} + \sum_{j=1}^p \gamma_j y_{ct-j} + \sum_{j=1}^p \eta_j m_{ct-j} + \varepsilon_{ct}$$ (3) Where m_{ct} corresponds to one of several potential mechanisms depicted in the literature: investment as gross capital formation as a percentage of GDP from the WDI of the World Bank, the percentage of primary school-aged population enrolled in primary education from Barro and Lee (2013) in the V-Dem Dataset Coppedge et al. (2023), tax revenues as percentage of GDP from Hendrix (2010), and the infant mortality rate per 1000 live births from Gapminder compiled from the UNICEF dataset on infant mortality, Mitchell (1998) historical statistics and the Human Mortality Database. This model assumes the same dynamic properties of Equation 1, with the exception that it includes lagged values of real GDP per capita on the right hand-side to control for the mechanical effect of the level of development on each mechanism. Table 2 shows that both horizontal and vertical constraints appear to affect the channels depicted by the literature, particularly those findings suggested by Cox and Wein- gast (2018) and Gerring et al. (2021). In the table I report three sets of analyses for each outcome: an analysis that includes only horizontal constraints in the first columns, another for only vertical constraints in the second columns, and an analysis including both constraints in the third columns. Results shown in Column 3 of Table 2 suggest that horizontal constraints significantly increase private investment by 2.13 per cent in the short run (standard error = 1.08), and by 9.25 per cent in the long run (standard error = 4.61); vertical constraints show no significant relationship with this outcome in either model that includes them. On the other hand, results presented in Column 6 of Table 2 suggest that vertical constraints significantly increase primary-school enrollment by .244 percent in the short run (standard error = .101) and 10.09 percent in the long run (standard error = 4.20). Horizontal constraints do not have a statistically significant effect on education once controlled by vertical constraints. In a similar vein, Column 9 of Table 2 shows that the presence of vertical constraints increases tax revenue by 3.93 per cent in the short run (standard error = 1.62) and roughly by 17 per cent in the long run (standard error = 6.62). Horizontal constraints show no significant relationship with tax revenue in either model. Finally, Column 12 of Table 2 suggests that vertical constraints significantly decrease child mortality rate by .613 in the short run (standard error = .232) and 36.54 in the long run (standard error = 12.18). Horizontal constraints once again show no significant relationship with infant mortality once controlled by the effect of vertical constraints. Table 2: The effect of executive constraints on growth sources | | Log of | investme
in GDF | ent share | | mary-scl
nrollmer | | 0 | of Tax s
in GDP | | Child | mortali | ty rate | |---|----------------|--------------------|----------------|----------------|----------------------|-----------------|----------------|--------------------|-----------------|-----------------|-----------------|-----------------| | | | | | | | Within | estimates | | | | | | | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | | Horizontal constraints | 2.12
(1.04) | | 2.13
(1.08) | .150
(.057) | | 047
(.105) | 2.24
(1.53) | | -1.06
(1.99) | 256
(.140) | | .224
(.192) | | Vertical constraints | | 1.70
(1.12) | 008
(1.27) | | .206
(.055) | .244
(.101) | | 3.14
(1.32) | 3.93 (1.62) | | 442 (.165) | 613
(.232) | | Effect after 25 years | 9.17
(4.25) | 7.39
(4.70) | 9.20
(4.58) | 5.61
(2.12) | 7.64
(2.02) | 9.04
(3.72) | 9.56
(6.62) | 13.36
(5.59) | 16.70
(6.57) | -8.09 (4.13) | -13.91 (4.44) | -19.30 (6.22) | | Long-run effect | 9.22
(4.26) | 7.44 (4.72) | 9.25 (4.61) | 6.25 (2.37) | 8.54 (2.28) | 10.09
(4.20) | 9.62
(6.67) | 13.45
(5.63) | 16.81
(6.62) | -15.40 (7.87) | -26.31 (8.49) | -36.54 (12.18) | | Persistence of outcome variable | .770
(.019) | .772
(.019) | .770
(.019) | .976
(.003) | .976
(.003) | .976
(.003) | .767
(.039) | .766
(.039) | .766
(.039) | .983
(.003) | .983
(.003) | .983
(.003) | | Observations
Countries in the sample | 5,797
146 | 5,797
146 | 5,797
146 | 5,474
103 | 5,474
103 | 5,474
103 | 4,747
120 | 4,747
120 | 4,747
120 | 8,520
156 | 8,520
156 | 8,520
156 | Note.— The table presents estimates of the effect of executive constraints on several growth channels. Reported coefficients are multiplied by 100. Robust standard errors against heteroscedasticity and serial correlation at the country level are reported in parenthesis. All specifications are controlled for a full set of country and year fixed effects and four lags of log real GDP per capita. Columns 3 reports the long-run effects for horizontal constraints, whereas columns 6, 9 and 12 report this information for vertical constraints. #### Conclusion This article challenges the conventional wisdom that horizontal constraints on rulers, such as checks and balances, are a sufficient or the most important condition for growth (Cox and Weingast 2018). Building on Acemoglu et al. (2019) dynamic panel models, I show that horizontal constraints do not significantly affect short and long-run economic growth. Instead, my findings suggest that vertical constraints are the driving force through which democracy fosters economic and human development. Two arguments explain these findings. First, studies such as Gehlbach and Keefer (2011) show that horizontal constraints on rules are not the only institution that can resolve commitment problems between investors and the predatory state. Strong and institutionalized political parties may provide mechanisms for protecting private interests, particularly in non-democracies. Thus, commitment-enhancing mechanisms are not exclusive to horizontal constraints, and even the presence of vertical ones may be more important for such a mechanism to occur. Secondly, proponents of the commitment argument have relied heavily upon cases such as the English Glorious Revolution to explain how horizontal constraints influence economic development. Studies surrounding such a case pinpoint how important it was to allow the formation of representative institutions that ceded power to a broader segment of society (Cox 2012). However, these approaches do not examine the fact that all of those actors represented in the English Parliament after the Revolution already had economic and political privileges that the majority of the population didn't have: barely two percent of the population could vote in the 18th century (Acemoglu and Robinson 2012, 230). Polities with only horizontal constraints are indeed cases characterized by having profoundly unequal societies and exclusive political systems. Horizontal accountability may still produce the correct incentives for investment, but these institutions do not enhance other outcomes that may be strongly correlated with steady economic development such as the provision of public goods. Even though executive constraints foster growth by solving collective action problems, it seems that vertically constrained rulers are better able to do so than horizontally constrained ones. #### References - Acemoglu, Daron, Suresh Naidu, Pascual Restrepo, and James A. Robinson. 2019. "Democracy Does Cause Growth." *Journal of Political Economy* 127 (1): 47–100. - Acemoglu, Daron, and James A. Robinson. 2005. Economic Origins of Dictatorship and Democracy. Cambridge University Press, December. - ———. 2012. Por qué fracasan los países: los orígenes del poder, la prosperidad y la pobreza. Barcelona: Deusto, Grupo Planeta. - Arellano, Manuel, and Stephen Bond. 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations." The Review of Economic Studies 58 (2): 277–297. - Barro, Robert J. 1973. "The Control of Politicians: An Economic Model." *Public Choice* 14:19–42. - ——. 1996. "Democracy and Growth." Journal of Economic Growth 1 (1): 1–27. - Barro, Robert J, and Jong Wha Lee. 2013. "A new data set of educational attainment in the world, 1950–2010." *Journal of Development Economics* 104:184–198. - Benhabib, Jess, and Adam Przeworski. 2010. "Economic growth under political accountability." *International Journal of Economic Theory* 6 (1): 77–95. - Besley, Timothy, Tim Besley, Rohini Pande, and Vijayendra Rao. 2005. "Participatory Democracy in Action: Survey Evidence from South India." *Journal of the European Economic Association* 3 (2/3): 648–657. - Besley, Timothy, and Masayuki Kudamatsu. 2006. "Health and Democracy." *The American Economic Review* 96 (2): 313–318. - Besley, Timothy, Rohini Pande, and Vijayendra Rao. 2007. "Political Economy of Panchayats in South India." *Economic and Political Weekly* 42 (8): 661–666. - Bizzarro, Fernando, John Gerring, Carl Henrik Knutsen, Allen Hicken, Michael Bernhard, Svend Erik Skaaning, Michael Coppedge, and Staffan I. Lindberg. 2018. "Party Strength and Economic Growth." World Politics 70, no. 2 (April): 275–320. - Blundell, Richard, and Stephen Bond. 1998. "Initial conditions and moment restrictions in dynamic panel data models." *Journal of Econometrics* 87, no. 1 (November): 115–143. - Boese, Vanessa Alexandra, Scott Gates, Carl Henrik Knutsen, Håvard Mokleiv Nygård, and Håvard Strand. 2022. "Patterns of Democracy over Space and Time." *International Studies Quarterly* 66 (3). - Boese, Vanessa Alexandra, and Matthew Charles Wilson. 2023. "Contestation and participation: Concepts, measurement, and inference." *International Area Studies Review*
26 (2): 89–106. - Bolt, Jutta, and Jan Luiten van Zanden. 2024. "Maddison-style estimates of the evolution of the world economy: A new 2023 update." *Journal of Economic Surveys*. - Canes-Wrone, Brandice, and Jee-Kwang Park. 2014. "Elections, Uncertainty and Irreversible Investment." British Journal of Political Science 44 (1): 83–106. - Canes-Wrone, Brandice, Christian Ponce de León, and Sebastian Thieme. 2023. "Institutional constraints on the executive, investment, and elections." *Presidential Studies Quarterly* 53 (2): 273–292. - Colagrossi, Marco, Domenico Rossignoli, and Mario A. Maggioni. 2020. "Does democracy cause growth? A meta-analysis (of 2000 regressions)." European Journal of Political Economy 61. - Coppedge, Michael, John Gerring, Carl Henrik Knutsen, Staffan Lindberg, Jan Teorell, David Altman, Michael Bernhard, et al. 2023. V-Dem Country-Year Dataset v13. - Cornell, Agnes, Carl Henrik Knutsen, and Jan Teorell. 2020. "Bureaucracy and Growth." Comparative Political Studies 53, no. 14 (December): 2246–2282. - Cox, Gary W. 2012. "Was the glorious revolution a constitutional watershed?" *Journal of Economic History* 72 (3): 567–600. - Cox, Gary W., and Barry R. Weingast. 2018. "Executive Constraint, Political Stability, and Economic Growth." Comparative Political Studies 51 (3): 279–303. - Dahl, Robert A. 1971. *Polyarchy; participation and opposition* [in eng]. New Haven: Yale University Press. - Doucouliagos, Hristos, and Mehmet Ali Ulubaşoğlu. 2008. "Democracy and Economic Growth: A Meta-Analysis." American Journal of Political Science 52 (1): 61–83. - Fariss, Christopher J, Therese Anders, Jonathan N Markowitz, and Miriam Barnum. 2022. "New Estimates of Over 500 Years of Historic GDP and Population Data." *Journal of Conflict Resolution* 66, no. 3 (February): 553–591. - Ferejohn, John. 1986. "Incumbent Performance and Electoral Control." *Public Choice* 50 (1/3): 5–25. - ——. 1999. "Accountability and Authority: Toward a Theory of Political Accountability." In *Democracy, Accountability, and Representation*, 131–153. Cambridge University Press, September. - Gehlbach, Scott, and Philip Keefer. 2011. "Investment without democracy: Ruling-party institutionalization and credible commitment in autocracies." *Journal of Comparative Economics* 39 (2): 123–139. - Gerring, John, Philip Bond, William T Barndt, and Carola Moreno. 2005. "Democracy and Economic Growth: A Historical Perspective." World Politics 57 (3): 323–364. - Gerring, John, Carl Henrik Knutsen, and Jonas Berge. 2022. "Does Democracy Matter?" Annual Review of Political Science 25:357–375. - Gerring, John, Carl Henrik Knutsen, Matthew Maguire, Svend-Erik Skaaning, Jan Teorell, and Michael Coppedge. 2021. "Democracy and human development: issues of conceptualization and measurement." *Democratization* 28 (2): 308–332. - Gonçalves, Sónia. 2014. "The Effects of Participatory Budgeting on Municipal Expenditures and Infant Mortality in Brazil." World Development 53:94–110. - Haggard, Stephan, and Robert R. Kaufman. 2020. Development, Democracy, and Welfare States: Latin America, East Asia, and Eastern Europe. Princeton University Press. - Hendrix, Cullen S. 2010. "Measuring state capacity: Theoretical and empirical implications for the study of civil conflict." *Journal of Peace Research* 47 (3): 273–285. - Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available at www.mortality.org. - Knutsen, Carl Henrik. 2013. "Democracy, State Capacity, and Economic Growth." World Development 43 (March): 1–18. - ——. 2021. "A business case for democracy: regime type, growth, and growth volatility." *Democratization* 28 (8): 1505–1524. - Lindert, Peter H. 2004. Growing Public. Cambridge University Press, January. - Lührmann, Anna, Kyle L. Marquardt, and Valeriya Mechkova. 2020. "Constraining Governments: New Indices of Vertical, Horizontal, and Diagonal Accountability." *American Political Science Review* 114 (3): 811–820. - Marshall, Monty G., and Ted Robert Gurr. 2020. Polity 5. Political Regime Characteristics and Transitions, 1800-2018. Dataset Users' Manual. - Miller, Michael K. 2015. "Electoral authoritarianism and human development." Comparative Political Studies 48 (12): 1526–1562. - Mitchell, B. R. 1998. International Historical Statistics. London: Palgrave Macmillan UK. - Mulligan, Casey B, Ricard Gil, and Xavier Sala-i-Martin. 2004. "Do Democracies Have Different Public Policies than Nondemocracies?" *Journal of Economic Perspectives* 18 (1): 51–74. - Nickell, Stephen. 1981. "Biases in Dynamic Models with Fixed Effects." *Econometrica* 49 (6): 1417–1426. - North, Douglass C, and Barry R Weingast. 1989. "Constitutions and Commitment: The Evolution of Institutions Governing Public Choice in Seventeenth-Century England." The Journal of Economic History 49 (4): 803–832. - North, Douglass C. 1990. Institutions, Institutional Change and Economic Performance. Cambridge University Press, October. - Papaioannou, Elias, and Gregorios Siourounis. 2008. "Democratisation and Growth." *The Economic Journal* 118 (532): 1520–1551. - Persson, Torsten, and Guido Tabellini. 2005. The Economic Effects of Constitutions. Vol. 1. The MIT Press. - Pinto, Pablo M., and Jeffrey F. Timmons. 2005. "The political determinants of economic performance political competition and the sources of growth." *Comparative Political Studies* 38 (1): 26–50. - Przeworski, Adam, Michael E. Alvarez, Jose Antonio Cheibub, and Fernando Limongi. 2000. Democracy and Development. Cambridge University Press, August. - Przeworski, Adam, and Fernando Limongi. 1993. "Political Regimes and Economic Growth." Journal of Economic Perspectives 7 (3): 51–69. - Stasavage, David. 2002. "Private Investment and Political Institutions." *Economics and Politics* 14 (1): 41–63. - Touchton, Michael, Brian Wampler, and Tiago Peixoto. 2021. "Of democratic governance and revenue: Participatory institutions and tax generation in Brazil." *Governance* 34 (4): 1193–1212. - Wang, Yi Ting, Valeriya Mechkova, and Frida Andersson. 2019. "Does Democracy Enhance Health? New Empirical Evidence 1900–2012." *Political Research Quarterly* 72 (3): 554–569. - Wooldridge, Jeffrey M. 2020. *Introductory econometrics : a modern approach*. Seventh Edition. Boston: Cengage Learning. - Wright, Joseph. 2008. "Do authoritarian institutions constrain? How legislatures affect economic growth and investment." *American Journal of Political Science* 52 (2): 322–343. ## APPENDIX FOR "EXECUTIVE CONSTRAINTS AND ECONOMIC GROWTH" ## A1. Sample construction and descriptive statistics I constructed a dataset comprising a total of 196 countries ranging from 1789 to 2022. The dataset captures information from 27555 country-year observations and it compiles data from arround 70 different variables obtained from the following sources: V-Dem, Polity IV, Boix, Miller and Rosato (2020), The World Bank, Penn World Tables, Hendrix (2010), and Bolt and Zanden (2024). I compiled this data based on country-year pairs using the Correlates of War country codes as main unit identifiers whenever was possible. When this code was not available, I manually revised and change the name of the country using R code. The full data and the code are available online in the following link. Table A1 at the end of the Appendix provides a full list of country units and their year coverage. Table A2. Descriptive Statistics of key variables | Variable | N | Mean | St. Dev. | Min | Median | Max | |----------------------------------|-----------|-------------|--------------|--------|--------|---------------| | Executive constraints, Polity IV | 16,213 | 3.816 | 2.391 | 1 | 3 | 7 | | Competitivesness, Polity IV | 16,213 | 1.581 | 1.048 | 0 | 1 | 3 | | Horizontal constraints | 16,213 | 0.412 | 0.492 | 0 | 0 | 1 | | Vertical constraints | 16,213 | 0.409 | 0.492 | 0 | 0 | 1 | | GDP per capita | 15,953 | $8,\!137.4$ | $11,\!821.5$ | 377.6 | 3,609 | $160,\!051.2$ | | Investment share of GDP | 7,771 | 0.231 | 0.090 | -0.134 | 0.225 | 0.894 | | Primary-school enrollment rate | 15,957 | 51.336 | 37.299 | 0.003 | 54.430 | 99.997 | | Tax revenue share of GDP | $5,\!836$ | 0.180 | 0.099 | 0.002 | 0.161 | 0.703 | | Child mortality per 1,000 births | 24,844 | 235.310 | 165.912 | 1.470 | 239.0 | 756.0 | | Horizontal accountability, LMM | 19,183 | 0.494 | 0.293 | 0.008 | 0.480 | 0.991 | | Vertical accountability, LMM | 19,183 | 0.502 | 0.306 | 0.053 | 0.513 | 0.964 | Table A2 describes summary statistics for key variables. The first two rows describe information from the Polity IV original variables I used to construct Cox and Weingast (2018) dichotomous indicators for horizontal and vertical constraints. Even though data coverage is fairly equitable across most variables, the World Bank and Hendrix (2010) only covers information from the second half of the 20th century. Given this data constraint, I restrict my main analyses for the period raging 1950 to 2020. This approach ensures that findings related to the direct effect of executive constraints on growth and on different growth channels are derived from the same time period. ## A2. Constraints as Components of Democracy Regime evolution is a complex phenomena to the extent that countries might experience political transformations in very different forms and degrees. Most of the heterogeneous results that have characterized the relationship between democracy and growth can be attributed to institutional variation across regimes. To account for this concern, several studies have desegregated regimes into features such as political accountability (Lührmann, Marquardt, and Mechkova 2020), and polyarchy dimensions (Boese et al. 2022; Boese and Wilson 2023). In this paper I take a similar approach by focusing in two forms of executive constraints. I treat both the contestation and participation dimensions of democracy
as vertical constraints because the direction of accountability these institutions produce is vertical. This approach also allows me to incorporate electoral institutions into important discussions about the impact of liberal democracy on economic development. In particular, how democratic politics influence property right's protection and how they may control ruler's predatory behavior to improve citizens' welfare. Here I provide more details about the dichotomous measures of executive constraints I constructed from Polity IV indicators. Table A3 provides GDP summaries for each category in the two original Polity IV variables. Observations of my binary indicator for executive constraints is evenly distributed in the aggregated categories. For horizontal constraints, I coded 9,537 country-year observations as not having these institutions and 6,676 observations as having these constraints. On the other hand, I coded 9,589 country-year observations has not having vertical constraints, and 6,624 observations as having these constraints. Table A3. GDP per capita by Category of Executive Constraints (Polity IV) | Executive Constraints (Decision Rules) | Mean | St. Dev. | N | Prop. | |--|-----------|-----------|------|-------| | Unlimited Executive Authority | 5362.986 | 12620.742 | 4584 | 0.166 | | Intermediate category one | 5653.388 | 8045.191 | 968 | 0.035 | | Slight to Moderate Limitations | 5234.089 | 9881.236 | 3624 | 0.132 | | Intermediate category two | 5862.566 | 5747.317 | 361 | 0.013 | | Substantial Limitations | 4410.969 | 3935.098 | 1454 | 0.053 | | Intermediate category three | 9056.805 | 7854.082 | 799 | 0.029 | | Executive Parity or Subordination | 14508.763 | 12818.683 | 4423 | 0.161 | Sample size: 144 countries and a total of 16213 country-year observations. A puzzling fact is that empirical evidence suggests that there is no regular pattern to the sequence in which both forms of executive constraints emerge across societies. For example, there are institutional configurations with the presence of both constraints, such as democratic political systems with an effective division of powers and free and Table A4. GDP per capita by Category of Competitiveness (Polity IV) | Competitiveness of Executive Recruitment | Mean | St. Dev. | N | Prop. | |---|-------------------------|-------------------------|--------------|------------------| | Not Regulated Transfers Hereditary Succession/Designation | 4007.324
5536.737 | 5952.112
11356.412 | 2066
7523 | 0.075
0.273 | | Dual/Transitional
Election | $6196.609 \\ 13620.108$ | $7694.756 \\ 12457.367$ | 1767 4857 | $0.064 \\ 0.176$ | Sample size: 144 countries and a total of 16213 country-year observations. fair elections. Other configurations may present different combinations of both types of institutions such as systems with weak checks and balances, but where regular elections are held, or settings in which the leader is controlled neither by the parliament nor by the citizenry. The interaction between horizontal and vertical constraints forms at least four institutional configurations built accordingly to all their possible combinations. These settings determine the extent to which a ruler is committed to protecting rights and / or is responsible for citizens' sanctions. Therefore, my dataset contains information for 5,829 country-year observations of cases with the presence of both constraints; 847 observations of cases with the presence of horizontal and the absence of vertical ones; 795 observations of cases with the absence of horizontal and the presence of vertical constraints; and 9,490 observations of cases with neither form of constraint. The following tables give a detailed description of each country-year observation coded within these four institutional configurations. Figure A1: Interaction Plot between Horizontal and Vertical Constraints Table A5. Country-year observations coded as not having either constraint | Country | Coverage | |-------------------|-------------|----------------|-------------|---------------|-------------|-------------|-------------|-----------------|-------------|-----------------|-------------| | Afghanistan | 1800-2018 | Chad | 1960-2018 | France | 1958 | Ivory Coast | 1960-1999 | Pakistan | 1999-2007 | Spain | 1873-1875 | | Albania | 1915 - 1989 | Chile | 1818 - 1850 | Gabon | 1960 - 2008 | Ivory Coast | 2002-2010 | Panama | 1903 - 1954 | Spain | 1923 - 1930 | | Albania | 1991 | Chile | 1924 - 1934 | Georgia | 1992 - 1994 | Japan | 1800 - 1867 | Panama | 1968 - 1988 | Spain | 1939 - 1977 | | Algeria | 1962-2003 | Chile | 1973 - 1988 | German East | 1949 - 1990 | Japan | 1945 - 1951 | Papal States | 1815 - 1860 | Sudan | 1958 - 1964 | | Angola | 1975 - 2018 | China | 1800 - 1911 | Germany | 1800 - 1908 | Jordan | 1946 - 1955 | Paraguay | 1811 - 1936 | Sudan | 1969 - 1985 | | Argentina | 1825 - 1879 | China | 1913-2018 | Germany | 1918 | Jordan | 1957 - 2018 | Paraguay | 1940 - 1988 | Sudan | 1989 - 2011 | | Argentina | 1930 - 1936 | Colombia | 1860 - 1866 | Germany | 1933 - 1944 | Kazakhstan | 1991 - 2018 | Parma | 1815 - 1859 | Suriname | 1980 - 1986 | | Argentina | 1943 - 1957 | Colombia | 1886 - 1899 | Ghana | 1964 - 1969 | Kenya | 1964 - 1996 | Peru | 1821 - 1827 | Suriname | 1990 | | Argentina | 1966 - 1972 | Colombia | 1904 - 1929 | Ghana | 1972 - 1978 | Kosovo | 1999 | Peru | 1835 - 1885 | Sweden | 1800-1869 | | Argentina | 1976 - 1982 | Colombia | 1948 - 1956 | Ghana | 1982 - 2000 | Kuwait | 1963 - 2018 | Peru | 1919 - 1932 | Sweden | 1907 - 1916 | | Armenia | 1996 - 1997 | Comoros | 1975 - 1977 | Greece | 1827 - 1863 | Kyrgyzstan | 1991 - 2004 | Peru | 1948 - 1955 | Syria | 1949 - 1953 | | Austria | 1919 | Comoros | 1982 - 1989 | Greece | 1916 - 1919 | Kyrgyzstan | 2010 | Peru | 1962 | Syria | 1958 - 2018 | | Austria | 1933 - 1938 | Comoros | 1995 | Greece | 1922 - 1925 | Laos | 1959 - 2018 | Peru | 1968 - 1979 | Taiwan | 1949 - 1991 | | Austria | 1945 | Comoros | 1999 - 2001 | Greece | 1936-1943 | Latvia | 1934 - 1939 | Peru | 1992-2000 | Tajikistan | 1991 - 2018 | | Azerbaijan | 1991 | Comoros | 2018 | Greece | 1967 - 1974 | Lebanon | 1975 - 2004 | Philippines | 1941-1943 | Tanzania | 1961 - 1994 | | Azerbaijan | 1993-2018 | Costa Rica | 1838 - 1889 | Guatemala | 1839 - 1878 | Lesotho | 1970 - 1992 | Philippines | 1972 - 1986 | Thailand | 1800 - 1968 | | Baden | 1819 - 1871 | Costa Rica | 1917 - 1919 | Guatemala | 1896 - 1897 | Liberia | 1890 - 1996 | Poland | 1935 - 1938 | Thailand | 1971 - 1973 | | Bahrain | 1971 - 2018 | Croatia | 1991 - 1999 | Guatemala | 1900-1920 | Liberia | 2003 - 2005 | Poland | 1944-1988 | Thailand | 1976 - 1977 | | Bangladesh | 1975 - 1990 | Cuba | 1952 - 2018 | Guatemala | 1931-1943 | Libya | 1951 - 2018 | Portugal | 1800 - 1835 | Thailand | 1991 | | Bangladesh | 2007 - 2008 | Cyprus | 1963 - 1967 | Guatemala | 1954 - 1965 | Lithuania | 1926 - 1939 | Portugal | 1842 - 1889 | Thailand | 2006 - 2007 | | Bangladesh | 2018 | Cyprus | 1974 | Guatemala | 1974 - 1985 | Luxembourg | 1940 - 1944 | Portugal | 1907 | Thailand | 2014 - 2018 | | Bavaria | 1800 - 1871 | Czechia | 1938 - 1945 | Guinea | 1958-2009 | Madagascar | 1972 - 1991 | Portugal | 1910 | The Gambia | 1994 - 2016 | | Belarus | 1996-2018 | Czechia | 1948-1988 | Guinea-Bissau | 1974 - 1999 | Malawi | 1964-1993 | Portugal | 1926 - 1975 | Togo | 1960 - 2018 | | Belgium | 1830-1846 | Congo Dem.Rep. | 1960 - 2005 | Guinea-Bissau | 2003-2004 | Mali | 1960-1991 | Qatar | 1971-2018 | Tunisia | 1956 - 2013 | | Belgium | 1914 | Congo Dem.Rep. | 2016-2018 | Guinea-Bissau | 2012-2013 | Mali | 2012 | Rep. of Vietnam | 1955 - 1975 | Turkey | 1800-1908 | | Belgium | 1940-1943 | Denmark | 1800-1848 | Guyana | 1980-1991 | Mauritania | 1962-2006 | Rep. of Congo | 1963-1991 | Turkey | 1918 - 1945 | | Benin | 1963-1990 | Denmark | 1866-1914 | Haiti | 1820-1933 | Mauritania | 2008-2018 | Rep. of Congo | 1997-2018 | Turkey | 1960 | | Bhutan | 1907-2007 | Denmark | 1940 - 1944 | Haiti | 1950-1956 | Mexico | 1822 - 1993 | Romania | 1864-1989 | Turkey | 2016 - 2018 | | Bolivia | 1825 - 1872 | Djibouti | 1977 - 1998 | Haiti | 1961-1993 | Modena | 1815 - 1859 | Russia | 1800 - 1922 | Turkmenistan | 1991 - 2018 | | Bolivia | 1876 - 1879 | Dominican Rep. | 1844 - 1977 | Haiti | 1999-2005 | Mongolia | 1924-1989 | Rwanda | 1961-2018 | Tuscany | 1815 - 1860 | | Bolivia | 1936-1951 | Ecuador | 1830 - 1947 | Haiti | 2010-2016 | Morocco | 1800-1912 | Saudi Arabia | 1926-2018 | Two Sicilies | 1816 - 1860 | | Bolivia | 1964-1981 | Ecuador | 1963-1967 | Honduras | 1839-1847 | Morocco | 1956-2018 | Saxony | 1806 - 1867 | Uganda | 1966 - 1979 | | Bosnia & Herz. | 1992-2018 | Ecuador | 1972 - 1978 | Honduras | 1852 - 1853 | Mozambique | 1975 - 1993 | Senegal | 1962 - 1977 | Uganda | 1985 - 2018 | | Brazil | 1824 - 1945 | Egypt | 1928 - 1934 | Honduras | 1864 - 1893 | Nepal | 1800 - 1958 | Senegal | 1981-1999 | United Arab Em. | 1971 - 2018 | | Brazil | 1964-1973 | Egypt | 1952-2018 | Honduras | 1907 | Nepal | 1960-1980 | Serbia | 1929-1938 | Uruguay | 1830-1918 | | Bulgaria | 1879-1917 | El Salvador | 1841 - 1983 | Honduras | 1912 | Nepal | 2002-2005 | Serbia | 1941-1991 | Uruguay | 1934 - 1951 | | Bulgaria | 1919-1989 | Equ. Guinea | 1969-2018 | Honduras | 1919 | Netherlands | 1815 - 1847 | Sierra Leone | 1967 | Uruguay | 1971 - 1984 | | Burkina Faso | 1960 - 1977 | Eritrea | 1993-2018 | Honduras | 1924 | Netherlands | 1940-1944 | Sierra Leone | 1971-1995 | Uzbekistan | 1991-2018 | | Burkina Faso | 1980-2014 | Estonia | 1918 | Honduras | 1936-1981 | Nicaragua | 1838-1989 | Sierra Leone | 1997-2001 | Venezuela | 1830 - 1957 | | Burma/Myanmar | 1958-1959 | Estonia | 1933-1939 | Hungary | 1867 - 1987 | Niger | 1960 - 1992 | Singapore | 1965-2004 | Venezuela | 2009-2012 | | Burma/Myanmar | 1962-2015 | Eswatini | 1968-2018 | Hungary | 1989 | Niger | 1996-1998
| Solomon Islands | 2000-2003 | Venezuela | 2017-2018 | | Burundi | 1962 | Ethiopia | 1930-1993 | India | 1947 - 1951 | Niger | 2009 | Somalia | 1969-2011 | Vietnam | 1954 - 1976 | | Burundi | 1966-2004 | Fiji | 1987-1989 | Indonesia | 1945 | Nigeria | 1966-1978 | South Africa | 1992-1993 | Würtemberg | 1800-1818 | | Burundi | 2015-2018 | Fiji | 2000 | Indonesia | 1957-1998 | Nigeria | 1984-1998 | South Korea | 1948-1959 | Yemen | 1918-1961 | | Cambodia | 1953-1992 | Fiji | 2006-2017 | Iran | 1800-1940 | North Korea | 1948-2018 | South Korea | 1961-1962 | Yemen | 1966-2011 | | Cambodia | 1997-2012 | Finland | 1930 | Iran | 1953-1996 | Norway | 1814-1872 | South Korea | 1972-1987 | Yemen | 2014-2018 | | Cambodia | 2017-2018 | France | 1800-1829 | Iran | 2004-2018 | Norway | 1940-1944 | South Sudan | 2011-2018 | Zambia | 1972-1990 | | Cameroon | 1966-2018 | France | 1851-1868 | Iraq | 1924-2009 | Oman | 1800-2018 | South Yemen | 1967-1990 | Zimbabwe | 1987-2008 | | Central Afr. Rep. | 1960-1992 | France | 1870-1876 | Italy | 1861-1899 | Pakistan | 1972 | Spain | 1800-1836 | | | | Central Afr. Rep. | 2003-2015 | France | 1940-1946 | Italy | 1922-1947 | Pakistan | 1977-1987 | Spain | 1845-1870 | Total: | 9,490 obs. | Table A6. Country-year observations coded as having only vertical constraints | Country | Coverage | |------------|-------------|-------------------|-------------|-----------|-------------|------------|-------------|---------------|-------------|-----------|-------------| | Albania | 1990 | Cambodia | 1993–1996 | Ghana | 1960-1963 | Kenya | 1997-2001 | Peru | 1886-1918 | Suriname | 1987-1989 | | Argentina | 1880 - 1929 | Chile | 1851 - 1887 | Greece | 1915 | Kyrgyzstan | 2005 | Peru | 1933 – 1947 | Tanzania | 1995 – 2018 | | Argentina | 1937 - 1942 | Chile | 1935 - 1963 | Greece | 1920 – 1921 | Kyrgyzstan | 2007 - 2009 | Philippines | 1935 - 1940 | Thailand | 1969 - 1970 | | Armenia | 1995 | Colombia | 1832 - 1859 | Guatemala | 1879 - 1895 | Lebanon | 1943 – 1974 | Philippines | 1944 - 1949 | Thailand | 1974 - 1975 | | Azerbaijan | 1992 | Colombia | 1930 - 1947 | Guatemala | 1898 - 1899 | Liberia | 1997 - 2002 | Philippines | 1969 - 1971 | Thailand | 1978 - 1990 | | Bangladesh | 1974 | Cuba | 1902 – 1951 | Guatemala | 1921 - 1930 | Madagascar | 1960 – 1971 | Poland | 1989 - 1990 | Turkey | 1971 - 1972 | | Bangladesh | 2014 – 2017 | Czechia | 1989 | Guatemala | 1944 - 1953 | Malawi | 2001 - 2002 | Rep. of Congo | 1960 - 1962 | Turkey | 1980 - 1982 | | Belarus | 1995 | Djibouti | 1999-2018 | Guatemala | 1966 - 1973 | Malaysia | 1969 – 1970 | Russia | 1993 - 1999 | Turkey | 2014 - 2015 | | Benin | 1960 - 1962 | Ecuador | 1948 – 1962 | Guatemala | 1986 - 1995 | Malaysia | 1996-2007 | Russia | 2007 - 2018 | Uganda | 1980 - 1984 | | Bhutan | 2008-2012 | Ecuador | 1970 - 1971 | Guinea | 2010 - 2018 | Mexico | 1994-1996 | Senegal | 1960-1961 | Venezuela | 2006 - 2008 | | Bolivia | 1873 - 1875 | Ecuador | 2007 - 2018 | Haiti | 1935 - 1945 | Mozambique | 1994 - 2012 | Senegal | 1978 - 1980 | Venezuela | 2013 - 2016 | | Bolivia | 1880 - 1935 | Equatorial Guinea | 1968 | Honduras | 1904-1906 | Nepal | 1959 | Sierra Leone | 1968 – 1970 | Zambia | 1964 - 1971 | | Brazil | 1961-1963 | France | 1959 - 1964 | Hungary | 1988 | Nepal | 1981 - 1989 | Singapore | 2005 - 2018 | Zimbabwe | 1983-1986 | | Brazil | 1974 - 1984 | Gabon | 2009-2018 | Iran | 1997 - 2003 | Paraguay | 1937 - 1939 | South Korea | 1963 - 1971 | Zimbabwe | 2009 – 2012 | | Bulgaria | 1918 | Georgia | 1991 | Iraq | 2010-2013 | Paraguay | 1989–1991 | Sri Lanka | 2010-2014 | Total: | 795 obs. | Table A7. Country-year observations coded as having only horizontal constraints | Country | Coverage | |------------|-------------|------------|-------------|-----------|-------------|-------------|-------------|-------------|-------------|----------------|-------------| | Albania | 1914 | Comoros | 2002-2005 | Germany | 1909–1917 | Luxembourg | 1867-1889 | Portugal | 1908-1909 | Turkey | 1909–1917 | | Albania | 1996 | Costa Rica | 1948 | Guyana | 1966 – 1979 | Madagascar | 2009 - 2013 | Romania | 1859 - 1863 | United Kingdom | 1800 - 1836 | | Algeria | 2004 – 2018 | Denmark | 1849 - 1865 | Honduras | 1848 - 1851 | Mauritania | 1960 - 1961 | Serbia | 1921 - 1928 | Uruguay | 1919 - 1933 | | Cambodia | 2013 – 2016 | Egypt | 1922 - 1927 | Honduras | 1854 - 1863 | Netherlands | 1848 - 1916 | Serbia | 1939 - 1940 | Würtemberg | 1819 - 1871 | | Cape Verde | 1975 - 1990 | Egypt | 1935 - 1945 | Indonesia | 1946 - 1956 | Niger | 2010 | South Korea | 1800 – 1905 | Yemen | 1962 - 1965 | | Chile | 1891 - 1923 | Ethiopia | 1855 - 1929 | Iran | 1941 - 1945 | Norway | 1873 - 1897 | Spain | 1837 - 1844 | Yemen | 2012 – 2013 | | China | 1912 | Fiji | 2018 | Italy | 1900 - 1921 | Poland | 1926 – 1934 | Spain | 1871 - 1872 | Zambia | 1996-2000 | | Colombia | 1900 - 1903 | France | 1830 - 1847 | Japan | 1868 – 1944 | Portugal | 1836 - 1841 | Spain | 1876 – 1899 | | | | Comoros | 1978 – 1981 | France | 1869 | Liberia | 1884–1889 | Portugal | 1890 - 1906 | Sweden | 1870-1906 | Total: | 847 obs. | Table A8. Country-year observations coded as having both constraints | Country | Coverage | |-------------------|-------------|-----------------|-------------|---------------|-------------|-----------------|-------------|------------------|-------------|-------------------|-------------| | Albania | 1992-1995 | Colombia | 1867-1885 | Greece | 1926-1935 | Latvia | 1991-2018 | Norway | 1898-1939 | Spain | 1978-2018 | | Albania | 1997 - 2018 | Colombia | 1957 - 2018 | Greece | 1944 - 1966 | Lebanon | 2005 - 2018 | Norway | 1945 - 2018 | Sri Lanka | 1948 - 2009 | | Argentina | 1958 - 1965 | Comoros | 1990 - 1994 | Greece | 1975 - 2018 | Lesotho | 1966 - 1969 | Pakistan | 1973 - 1976 | Sri Lanka | 2015 - 2018 | | Argentina | 1973 - 1975 | Comoros | 1996 - 1998 | Guatemala | 1996-2018 | Lesotho | 1993-2018 | Pakistan | 1988 - 1998 | Sudan | 1956 - 1957 | | Argentina | 1983-2018 | Comoros | 2006 - 2017 | Guinea-Bissau | 2000-2002 | Liberia | 1847 - 1883 | Pakistan | 2008-2018 | Sudan | 1965 - 1968 | | Armenia | 1991-1994 | Costa Rica | 1890-1916 | Guinea-Bissau | 2005-2011 | Liberia | 2006-2018 | Panama | 1955 - 1967 | Sudan | 1986-1988 | | Armenia | 1998-2018 | Costa Rica | 1920 - 1947 | Guinea-Bissau | 2014 - 2018 | Lithuania | 1918 - 1925 | Panama | 1989-2018 | Suriname | 1975 - 1979 | | Australia | 1901-2018 | Costa Rica | 1949-2018 | Guyana | 1992-2018 | Lithuania | 1991-2018 | Papua New-Guinea | 1975-2018 | Suriname | 1991 - 2018 | | Austria | 1920-1932 | Croatia | 2000-2018 | Haiti | 1934 | Luxembourg | 1890-1939 | Paraguay | 1992-2018 | Sweden | 1917-2018 | | Austria | 1946 - 2018 | Cyprus | 1960 - 1962 | Haiti | 1946-1949 | Luxembourg | 1945-2018 | Peru | 1828 - 1834 | Switzerland | 1848 - 2018 | | Bangladesh | 1972 - 1973 | Cyprus | 1968-1973 | Haiti | 1957-1960 | Madagascar | 1992-2008 | Peru | 1956-1961 | Svria | 1944-1948 | | Bangladesh | 1991-2006 | Czechia | 1918 - 1937 | Haiti | 1994-1998 | Madagascar | 2014-2018 | Peru | 1963-1967 | Syria | 1954 - 1957 | | Bangladesh | 2009-2013 | Czechia | 1946 - 1947 | Haiti | 2006-2009 | Malawi | 1994-2000 | Peru | 1980-1991 | Taiwan | 1992-2018 | | Belarus | 1991-1994 | Czechia | 1990-2018 | Haiti | 2017-2018 | Malawi | 2003-2018 | Peru | 2001-2018 | Thailand | 1992-2005 | | Belgium | 1847-1913 | Congo Dem. Rep. | 2006-2015 | Honduras | 1894-1903 | Malaysia | 1957-1968 | Philippines | 1950-1968 | Thailand | 2008-2013 | | Belgium | 1915-1939 | Denmark | 1915-1939 | Honduras | 1908-1911 | Malaysia | 1971 - 1995 | Philippines | 1987-2018 | The Gambia | 1965-1993 | | Belgium | 1944-2018 | Denmark | 1945-2018 | Honduras | 1913-1918 | Malaysia | 2008-2018 | Poland | 1918-1925 | The Gambia | 2017-2018 | | Benin | 1991-2018 | Dominican Rep. | 1978-2018 | Honduras | 1920-1923 | Mali | 1992-2011 | Poland | 1991-2018 | Timor-Leste | 2002-2018 | | Bhutan | 2013-2018 | Ecuador | 1968-1969 | Honduras | 1925 - 1935 | Mali | 2013-2018 | Portugal | 1911 - 1925 | Trinidad & Tobago | 1962-2018 | | Bolivia | 1952-1963 | Ecuador | 1979-2006 | Honduras | 1982-2018 | Mauritania | 2007 | Portugal | 1976-2018 | Tunisia | 2014-2018 | | Bolivia | 1982-2018 | Egypt | 1951 | Hungary | 1990-2018 | Mauritius | 1968-2018 | Rep. of Congo | 1992-1996 | Turkey | 1946-1959 | | Botswana | 1966-2018 | El Salvador | 1984-2018 | India | 1952-2018 | Mexico | 1997-2018 | Romania | 1990-2018 | Turkey | 1961-1970 | | Brazil | 1946-1960 | Estonia | 1919-1932 | Indonesia | 1999-2018 | Moldova | 1991-2018 | Russia | 1992 | Turkey | 1973-1979 | | Brazil | 1985-2018 | Estonia | 1991-2018 | Iran | 1946 - 1952 | Mongolia | 1990-2018 | Russia | 2000-2006 | Turkey | 1983-2013 | | Bulgaria | 1990-2018 | Fiji | 1970-1986 | Iraq | 2014-2018 | Montenegro | 2008-2018 | Senegal | 2000-2018 | Uganda | 1962-1965 | | Burkina Faso | 1978-1979 | Fiji | 1990-1999 | Ireland | 1921-2018 | Mozambique | 2013-2018 | Sierra Leone | 1961-1966 | Ukraine | 1991-2018 | | Burkina Faso | 2015-2018 | Fiji | 2001-2005 | Israel | 1948-2018 | Namibia | 1990-2018 | Sierra Leone | 1996 | United Kingdom | 1837-2018 | | Burma/Myanmar | 1948-1957 | Finland | 1917-1929 | Italy | 1948-2018 | Nepal | 1990-2001 | Sierra Leone | 2002-2018 | USA | 1800-2018 | | Burma/Myanmar | 1960-1961 | Finland | 1931-2018 | Ivory Coast | 2000-2001 | Nepal | 2006-2018 | Slovakia | 1993-2018 | Uruguay | 1952-1970 | | Burma/Myanmar | 2016-2018 | France | 1848-1850 | Ivory Coast | 2011-2018 | Netherlands | 1917-1939 | Slovenia | 1991-2018 | Uruguay | 1985-2018 | | Burundi | 1963-1965 | France | 1877-1939 | Jamaica | 1959-2018 | Netherlands | 1945-2018 | Solomon Islands | 1978-1999 | Venezuela | 1958-2005 | | Burundi | 2005-2014 | France | 1947-1957 | Japan | 1952-2018 | New Zealand | 1857-2018 | Solomon Islands | 2004-2018 | Zambia | 1991-1995 | | Cameroon | 1961-1965 | France | 1965-2018 | Jordan | 1956 | Nicaragua | 1990-2018 | Somalia | 1960-1968 |
Zambia | 2001-2018 | | Canada | 1867-2018 | Georgia | 1995-2018 | Kenya | 1963 | Niger | 1993-1995 | Somalia | 2012-2018 | Zimbabwe | 1980-1982 | | Cape Verde | 1991-2018 | Germany | 1919-1932 | Kenya | 2002-2018 | Niger | 1999-2008 | South Africa | 1910-1991 | Zimbabwe | 2013-2018 | | Central Afr. Rep. | 1993-2002 | Germany | 1949-2018 | Kosovo | 2000-2006 | Niger | 2011-2018 | South Africa | 1994-2018 | | | | Central Afr. Rep. | 2016-2018 | Ghana | 1970-1971 | Kyrgyzstan | 2006 | Nigeria | 1960-1965 | South Korea | 1960 | | | | Chile | 1888-1890 | Ghana | 1979-1981 | Kyrgyzstan | 2011-2018 | Nigeria | 1979–1983 | South Korea | 1988-2018 | | | | Chile | 1964-1972 | Ghana | 2001-2018 | Laos | 1953-1958 | Nigeria | 1999-2018 | Spain | 1900-1922 | | | | Chile | 1989-2018 | Greece | 1864-1914 | Latvia | 1920-1933 | North Macedonia | 1991-2018 | Spain | 1931-1938 | Total: | 5.829 obs. | | | 1000 2010 | G. CCCC | 1004 1014 | Lauvia | 1020 1000 | 1.01th Maccaoma | 1001 2010 | Spann | 1001 1000 | 13001. | 0,020 008. | #### A2.1. Comparison to Alternative Measures of Constraints There are two prominent measures of executive constraints: the dichotomous measure I created following Cox and Weingast (2018) based on Polity IV, and the political accountability indexes constructed by Lührmann, Marquardt, and Mechkova (2020). Both sets of indicators capture information about how political institutions may constrain rulers' behavior. As described in the paper, I code a country as having horizontal constraints when there are substantial limitations for exercising power by the chief executive according to Polity IV. Similarly, I code a country as having vertical constraints when at least one of the chief executives was elected by a competitive election according to Polity IV. By comparison, Lührmann, Marquardt, and Mechkova (2020) describe three forms of accountability: horizontal, vertical and diagonal. The horizontal accountable and incorporates data regarding the degree to which institutions such as legislatures, judiciaries, and other oversight agencies demand information and punish improper behavior. The vertical accountability index reflects the ability of the population to hold its government accountable though popular elections and political parties. My decision to focus on a measure based on Polity IV variables was based on its binary treatment effect rather than a continuous treatment effect. Specifically, my model estimates the short-run effects within country-years observations that has been treated with a institutional change. This interpretation becomes very difficult when this institutional change is measured as continuous, as in the 0-1 scale on the Lührmann, Marquardt, and Mechkova (2020) accountability indexes: unit changes in this scale do not give clear information about the specific institutional change that a country experienced in terms of accountability during the year observed. In simple words, continuous treatments make it impossible to determine what specific political change can be attributed to the short-run - and long-run - effects for a unit increase in the political accountability index. On the other hand, with a binary treatment, these effects can be attributed to a clear change from having or not having a certain type of institution. Nevertheless, it is worth highlighting that V-Dem and Polity-derived measures closely align. Figure A1 describes the correlation between Polity IV based measures for executive constraints and Lührmann, Marquardt, and Mechkova (2020) accountability indexes. The figure shows that higher levels of horizontal and vertical accountability are strongly associated with the presence of horizontal and vertical constraints correspondingly. This means that both variables are capturing similar information using different measures. Figure A2: Political accountability vs. Executive constraints Data: Lührmann, Marquardt, and Mechkova (2020) and Polity IV ## A3. Econometric assumptions Now I focus on giving more detailed discussions on important assumption that construct Equation 1. First, I explain why Acemoglu at al. (2019) panel model relies on GDP lags to control for growth dynamics. Then, I describe the sequential exogeneity assumption implied in this model and provide more information for the GMM estimator. ## A3.1. Do countries experience economic recessions before democracy take place? 25 Change in GDP per capita log points 20 15 10 5 0 -5 -10 -5 20 -15 5 10 15 25 30 Years around a democratization Figure A3: The temporary dip of GDP preceding democratization Note.— The graph illustrates GDP before and after a democratization takes place. Particularly, it plots logged real GDP per capita around a democratic transition, conditional on countries remaining non democratic in the same year. Log real GDP per capita is normalize to 0 in the year preceding the democratization. Time in years relative to the year of democratization in represented in the horizontal axis. The shaded gray area illustrates the GDP dip preceding democratization, an important assumption in the models presented by Acemoglu et al. (2019). Acemoglu et al. (2019) dynamic panel model heavily relies on the assumption that democratizations are on average preceded by a temporary dip in GDP (Acemoglu et al. 2005; Brückner and Ciccone 2011). Similarly, Papaioannou and Siourounis (2008) observed that transitions to democracy tend to occur during economic recessions. After the transition, there seems to be an immediate increase in economic performance, which fluctuates in subsequent years. However, when democracy consolidates (during the fifth, sixth and seventh post-transition year), growth stabilizes at higher rates than in the pretransition period. Figure A2 depicts this phenomenon, graphing how GDP behaves in countries that democratized at year 0 relative to countries that remained as non democracies at the time. As observed by the gray area, there is indeed a GDP downturn within the five years range before democracy takes place. According to Acemoglu et al. (2019), failing to control for such dynamics has lead to biased estimates of democracy on GDP, explaining the divergent results found in the literature. Because democracy is defined as an institutional arrangement that comprises several components, it makes sense to assume that this phenomenon can also occur when countries experience other types of political transitions, such as those characterized by developing horizontal or vertical constraints. Acemoglu et al. (2019) illustrate how these two institutions vary during a democratization process. In their Online Appendix, they show the behavior of several democracy components after a transition. They demonstrate that transitions to democracy are characterized by improvements in horizontal and vertical checks on rulers. These patterns suggest that transitions to democracy typically entail institutional changes characterized by more legislatures imposing checks and balances on rulers', and a greater likelihood that people may choose their leader through popular elections. Figures A3 and A4 show GDP dips for observations coded as having horizontal or vertical constraints in my sample. As observed, there seems to be economic recessions before such "minor" political transitions. Figure A4: The temporary dip of GDP preceding minor transformations #### A3.2. The need for exogeneity The model presented in Equation 1 implies that the relationship between constraints and economic outcomes involves two dynamic properties. The first one is persistence, in the sense that past values of the dependent variables might affect their current values. The second one is pre-democratization recession, implying that there is a dip in GDP before political transformations. Perhaps the most important assumption in such models is the need for exogeneity, which refers to the idea that my key independent variables do not have a direct relationship with unobserved covariates in the error term that could affect the dependent variable. This assumption changes when dealing with the timing of variables in a dynamic model, specially when the error term captures all other time-varying unobservables such as the shocks to GDP per capita. For instance, the sequential exogeneity assumption imposes that the values of the predictors at a given time are independent of the future error terms, conditional on past values of the dependent variable and the predictors. In other words, in my dynamic panel data model, exogeneity implies that given past values of GDP, the error term does not have a systematic relationship either with those past values of GDP and with the current and past values of both constraints. #### Assumption 1: Sequential Exogeneity Recall Equation 1 in the following terms: $$y_{ct} = \alpha_c + \delta_t + \xi C_{ct} + \sum_{j=1}^{4} \gamma_j y_{ct-j} + \varepsilon_{ct}$$ Where, y_{ct} is the dependent variable (log real GDP per capita) for country c and time t. C_{ct} is the presence of horizontal and vertical constraints, y_{ct-j} are lagged dependent variables, and ε_{ct} is the error term. Letting t_0 to denote the first year available in the sample which is 1950, the sequential exogeneity assumption imposes the following: $$\mathbb{E}\left[\varepsilon_{ct} \mid y_{ct-1}, ..., y_{ct_0}, C_{ct}, ..., C_{ct_0}, \alpha_c, \delta_t\right] = 0 \tag{4}$$ Here, the error term ε_{ct} is uncorrelated with constraints C_{ct} for all c and $t \geq t_0$, given the lagged dependent variables $y_{ct-1}, ..., y_{ct_0}$. This simply means that the error term is independent of past GDP per capita, current and past constraints and additional covariates. The intuition behind the assumption is the following. If we know the past values of the dependent variable and the predictors up to time t, the current error term should not be systematically influenced by those predictors. Essentially, the past values control for any
potential bias introduced by omitted or unobserved covariates. This assumption imposes that countries transitioning to or away from a political system with either constraint are not on a different GDP trend relative to others with similar levels of GDP in the past few years and similar levels of long-run development (Acemoglu et al. 2019). In Table 1 I give information for testing this assumption. The Arellano-Bond estimates use lagged values of the dependent variable and other exogenous variables as instruments for the current values of the independent variables included. In this regard, Sargan test for over-identifying restrictions is 1, which indicates that instruments are valid and thus uncorrelated with the error term. Additionally, the second-order auto correlation test AR2 is insignificant in all specifications, which means that the model is correctly specified that the exogeneity assumption holds. ### A3.3. Sensitivity to GMM Assumptions In dynamic panel data models, the Generalized Method of Moments (GMM) is particularly effective for dealing with the inherent complexity that arises when lagged dependent variables are included as regressors, which often leads to violating key assumptions. The core idea of GMM is to use moment conditions to estimate parameters in a model. Moment conditions are essentially equations derived from the model's assumption about the relationship between variables and the errors, such as the sequential exogeneity assumption presented above. These moment conditions ensure that the model remains valid under realistic assumptions about the data-generating process. Imagine for example we want to estimate some unknown parameter θ using data. The GMM does this by setting up moment conditions that relate the data with the parameters, then it finds the values of θ that make these conditions as close to zero as possible. As discussed in Section 2.1, dynamic panel data models like the one specified in Equation 1 have an asymptomatic bias of order 1/T, also known as the Nickell bias (Nickell 1981). Accordingly, y_{ct-j} might be correlated with country fixed effects in the error term, leading to biased estimates. However, this bias should be small in my setting since T is fairly large in the panel, each country is observed 54.6 times on average. This feature motivates the use of the within estimator. #### Difference GMM Estimation Here I provide more robustness to address potential endogeneity issues introduced by the inclusion of GDP lags in the right-hand side of Equation 1. Arellano and Bond (1991) propose the Difference GMM estimator as a tool to address the Nickell bias in panel data models. This method uses first-differencing to remove unit fixed effects and then uses lagged values of the dependent variable and the endogenous regressors as instruments in the first-differenced equations. Then, the estimation technique finds the parameters that satisfy the moment conditions, ensuring that the instruments are valid and the estimates are consistent. To illustrate how this estimator works, let use the first-difference estimator in Equation 1 as follows: Having Equation 1 in time t: $$Y_{ct} = \alpha_c + \delta_t + \xi C_{ct} + \sum_{j=1}^{4} \gamma_j Y_{ct-j} + \varepsilon_{ct}$$ And the same equation for time t-1: $$Y_{ct-1} = \alpha_c + \delta_{t-1} + \xi C_{ct-1} + \sum_{i=1}^{4} \gamma_i Y_{ct-(i-1)} + \varepsilon_{ct-1}$$ I can subtract the equation for t-1 from the equation for t: $$Y_{ct} - Y_{ct-1} = (\alpha_c - \alpha_c) + (\delta_t - \delta_{t-1}) + \xi(C_{ct} - C_{ct-1}) + \gamma(Y_{ct-1} - Y_{ct-2}) + \gamma(Y_{ct-2} - Y_{ct-3}) + \gamma(Y_{ct-3} - Y_{ct-4}) + \gamma(Y_{ct-4} - Y_{ct-5}) + (\varepsilon_{ct} - \varepsilon_{ct-1})$$ This simplifies to the following first-differenced equation: $$\Delta Y_{ct} = \sum_{t} \Delta \delta_t d_t + \xi \Delta C_{ct} + \sum_{j=1}^{4} \gamma_j \Delta Y_{ct-j} + \Delta \varepsilon_{ct}$$ (5) Where, ΔY_{ct} is the first difference of real GDP per capita for country c between t and t-1. $\Delta \delta_t$ is the first difference between year fixed effects in time t and t-1. This is essentially a time trend in common shocks that affect all countries equally. Hence, d_t are year dummies for the changes in year effects $\Delta \delta_t$. ΔC_{ct} is the first difference of executive constraints based on Polity IV between years t and t-1, and $\Delta \varepsilon_{ct}$ is the first difference of the error term. Since ΔY_{ct-1} is correlated with $\Delta \varepsilon_{ct}$, the GMM estimator uses lag levels of $Y_{ct-2}, Y_{ct-3}, ...$ as instrument for ΔY_{ct-1} . These earlier lags are valid instruments because they are not correlated with the current error term ε_{ct} . In other words, all endogenous variables in the first-differenced equation are instrumented by their lagged values. Hence, past values for both constraints $C_{ct-2}, C_{ct-3}, ...$ are also treated as instruments for ΔC_{ct} . In the other hand, the estimator includes instruments for a full set of year dummies (ranging from 1950 to 2020) d_t to account for time trends captured by $\Delta \delta_t$. Finally, based on Assumption 1, the moment conditions used in the Difference GMM are the following: For the dependent variable Y_{ct} : $$\mathbb{E}\left[\left(\varepsilon_{ct} - \varepsilon_{ct-1}\right) \cdot Y_{cs}\right] = 0 \quad \text{for all } s \le t - 2$$ This means that the second and higher lags of real GDP per capita are uncorrelated with the error term in the first-differenced equation. And for executive constraints C_{ct} : $$\mathbb{E}\left[\left(\varepsilon_{ct} - \varepsilon_{ct-1}\right) \cdot C_{c,s+1}\right] = 0 \quad \text{for all } s \le t - 2$$ Meaning that the first and higher lags of both executive constraints are valid instruments for the first-differenced constraints variable. In other words, error terms are assumed to be serially uncorrelated. I took as many as possible past lags to instrument for these variables, having 5995 instruments. GDP persistence is a bit lower, but the coefficients for vertical constraints is higher and significant. Sargan test is 0.000 whereas Hansen test is 1.00. # A4. Tests and checks for the dynamic panel model estimates In this section I compare different modeling decisions besides those proposed in my main specification. #### A4.1. Interaction effects Democracy components such as horizontal and vertical constraints have important interactive properties. Accordingly, when determining growth sources both constraints perform a substitute role. Hence, horizontal constraints increase investment whereas vertical ones increase human capital. They can perform this role in the absence of the other constraint. However, when both constraints are present in a society, they should complement each other to promote prosperity. Here, I present some additional evidence for such claims. I include an interaction term between both constraints into the specification described in Equation 1. Interestingly, the coefficient for the presence of vertical constraints is higher and still significant (p-value = .052), compared with the significant positive effect of the presence of both constraints. These results imply that having only vertical constraints increases growth by .873 percent in the short run (standard deviation = .426) conditional on the rest of covariates. On the other hand, the presence of both constraints increases GDP per capita by .544 percent in the short run (standard deviation = .233). I also evaluate whether this interaction is important when accessing sources of growth previously described. Results shown in Table A9 are consistent with my findings. Accordingly, when analyzing the incentives to invest, only the combination of both constraints appears to be increasing investment by 2.11 per cent in the short run. This observation is consistent with recent literature that contends democracy as a property rights enhancing institution. Conversely, the relationship between vertical constraints and human development does not change when including the interaction term. Vertical constraints increase primary school enrollment by .189 percent, they also increase tax revenue by 3.28 percent and decrease child mortality by 6.39 percent in the short run. These additional results imply that vertical constraints are indeed the driving force that leads to the positive effect of democracy on economic growth. While I expected that the coefficient for both constraints should capture all the potential positive effects of their components, the coefficient of vertical ones (though their significance in the within estimator) is higher in most of the cases. Additionally, these results also imply that failing to control for democracy as a whole or another institution may produce misleading results such as those observed with horizontal constraints coefficients. #### A4.2. Alternative GDP measures Here I use an alternative measure for economic growth based on point estimates from a latent variable model of GDP per capita Fariss et al. (2022). This variable is available for all countries in the sample ranging from 1789 to 2019. Without an interaction term, the results remain insensitive. Horizontal constraints do not affect growth significantly, whereas vertical constraints increase GDP per capita by .383 per cent in the short run. Table A9. Interaction Effects | Dependent variable | Only
Horizontal | Only
Vertical | Both
Constraints | Obs. | Countries | |---|--------------------|------------------|---------------------|---------|-----------| | GDP per capita | .212 | .873* | .544** | 9 5 1 0 | 156 | | (within estimates) | (.566) | (.426) | (.233) | 8,519 | 156 | | GDP per capita | .205 | 1.46*** | 1.28*** | 0 262 | 156 | | (GMM with 5995 instruments) | (.675) | (.558) | (.316) | 8,362 | 156 | | I (CDD | 3.798 | .242 | 2.11* | F
707 | 1.40 | | Investment share of GDP | (2.93) | (1.41) | (1.18) | 5,797 | 146 | | D: 1 1 11 4 | 534 | .189** | .203*** | F 474 | 100 | | Primary-school enrollment | (.379) | (.088) | (.059) | 5,474 | 103 | | C 1 1 1 11 4 | $.237^{'}$ | 072 | .176*** | F 4774 | 100 | | Secondary-school enrollment | (.761) | (.068) | (.057) | 5,474 | 103 | | T 1 CODD | -6.21 | 3.28** | 2.92* | 4 7 47 | 100 | | Tax revenue share of GDP | (6.79) | (1.60) | (1.56) | 4,747 | 120 | | CI 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .089 | 639** | 388** | 0.500 | 150 | | Child mortality per 1,000 births | (.233) | (.254) | (.165) | 8,520 | 156 | #### A4.3. Alternative functional form of GDP Table A10. Alternative GDP Measures and Functional Form | Dependent variable | Only | Only | Both | Obs. | Countries | |------------------------------------|------------|----------|-------------|-------|-----------| | Dependent variable | Horizontal | Vertical | Constraints | Obs. | Countries | | GDP per capita | .00004 | .383* | | 9.059 | 170 | | (Farris et al. 2022) | (.247) | (.209) | | 9,059 | 170 | | Growth rate of real GDP per capita | 061 | .738 | | 8,416 | 156 | | (estimates without interaction) | (.372) | (.452) | | 0,410 | 190 | | Growth rate of real GDP per capita | .739 | .889* | .669** | 8,416 | 156 | | (estimates with interaction) | (.468) | (.511) | (.117) | 0,410 | 190 | | Growth rate of the latent variable | .049 | .322 | | 8.950 | 170 | | (estimates without interaction) | (.254) | (.232) | | 0,950 | 170 | | Growth rate of the latent variable | 038 | .303 | .373*** | 8.950 | 170 | | (estimates with interaction) | (.244) | (.274) | (.119) | 0,950 | 110 | As described before, design choices are crucial for the relationship between democracy and economic growth (Doucouliagos and Ulubaşoğlu 2008; Colagrossi, Rossignoli, and Maggioni 2020; Gerring, Knutsen, and Berge 2022; Cruz, Gerring and Knutsen 2024). Specially, design choices regarding the dependent variable are perhaps the most crucial in determining the effects of democracy among social scientists. In particular, level measures of GDP per capita are frequently used in economic research (e.g. Acemoglu et al. 2019). Although widely unnoticed, this decision may explain why economists tend to be more optimistic on the relationship between democracy and growth than political scientists (Cruz, Gerring and Knutsen 2024). Here, I change the functional form of economic growth from a level specification to a first difference specification. Since this decision appears to be crucial in modeling the effects of democracy on growth, I also include an interaction term to access the combined effects of both constraints. Interestingly, the presence of both constraints increases significantly the real GDP per capita growth rate by .669 in the short run. Horizontal constraints do not affect growth significantly, but vertical constraints increase the growth rate by roughly .89 percent in the short run (standard deviation = .511; p-value = .084). #### A4.4. Sample selection and additional covariates Recall that the baseline model presented in Equation 1 is based on a sample covering 182 countries from 1950 to 2020. I made this decision due to panel data modeling constraints, particularly to avoid issues concerning having more temporal units than cross-sectional ones. Here, I use an additional sample that covers 183 countries ranging from 1900 to 2020. Table A11 describes the results for the effects of executive constraints on growth and its sources. The main results remain. Horizontal constraints do not affect growth significantly, whereas the effect of vertical constraints is positive and significant. Horizontal constraints, however, do significantly and positively affect private investment. The effect of both institutions on primary and secondary education is insignificant. However, these estimates could be biased because the number of countries is lower than the years observed. Finally, vertical constraints increase tax revenue and decrease infant mortality rates as measured by the World Bank. Table A12 shows the estimation results for the effect of executive constraints on economic growth using additional covariates as controls. These covariates are the same that Acemoglu et al. (2019) include in their research, such as the log of population, the log population below 16 years old, trade volume as a fraction of GDP and a binary measure of social unrest. The first panel shows results for my baseline specification using both measures of population and their lagged values as controls. The effect of vertical constraints is still positive and significant at the .1 level. These results suggest that vertical constraints increase GDP per capita by .944 per cent in the short run, after controlling for the effect of horizontal constraints, log population and the log of population below 16 years old. Interestingly, once controlled for population, the effect of horizontal constraints on economic growth is negative and significant at the .1 level. These estimates imply that the presence of horizontal constraints decreases GDP per capita by .853 percent in the short run, once controlled for additional covariates. The effect of both constraints is no longer significant when trade as a share of GDP is included in the model along with both measures of population. Interestingly, none of the additional covariates included have a significant effect. A similar pattern can be seen when the dummy of social unrest is included alongside with both measures of population. Unlike the case with trade, social unrest do have a negative a significant effect on GDP Table A11. Estimation Results using the whole sample | Dependent variable | Horizontal | Vertical | Observations | Countries | Years | |----------------------------------|------------|----------|--------------|-----------|--------| | GDP per capita | 388 | 1.037*** | 10,514 | 156 | 115 | | (within estimates) | (.256) | (.247) | 10,514 | 100 | 110 | | GDP per capita | .205 | 1.46*** | 1.28*** | 8,362 | 156 | | (GMM with 5995 instruments) | (.675) | (.558) | (.316) | 0,302 | 100 | | Investment share of GDP | 2.13* | 008 | 5,797 | 146 | 55 | | investment share of GDP | (1.08) | (1.27) | 5,191 | 140 | 99 | | Drimany ashaal annallment | .031 | .060 | 7 455 | 103 | 107 | | Primary-school enrollment | (.065) | (.064) | 7,455 | 105 | 107 | | Cocon dame caba al annallment | .064 | 010 | 7 155 | 102 | 107 | | Secondary-school enrollment | (.052) | (.051) | 7,455 | 103 | 107 | | T CDD | -1.06 | 3.93* | 4 7 4 7 | 100 | 40 | | Tax revenue share of GDP | (1.99) | (1.62) | 4,747 | 120 | 42 | | | .315 | -1.008 | 10 500 | 150 | 115 | | Child mortality (V-Dem gathered) | (.653) | (.698) | 10,520 | 156 | 115 | | Cl.:1.1 1:t (W1.1 D1-) | .148 | 407** | 7.040 | 155 | F F | | Child mortality (World Bank) | (.124) | (.145) | 7,242 | 155 | 55
 | Table A12. Full Controlled Model | Dependent variable | Horizontal | Vertical | Observations | Countries | Years | |------------------------------|------------|----------|--------------|-----------|-------| | GDP per capita | 853* | .944* | 5,559 | 134 | 47 | | (population as control) | (.448) | (.569) | 5,559 | 194 | | | GDP per capita | 048 | .039 | 4,556 | 130 | 46 | | (Trade as control) | (.444) | (.467) | 4,550 | 130 | | | GDP per capita | 757 | .815 | 5 005 | 130 | 47 | | (Social unrest as control) | (.537) | (.659) | 5,085 | 130 | | | Trade as share of GDP | 702 | .584 | 4,573 | 130 | 46 | | | (1.074) | (.985) | 4,373 | 130 | | | Probability of social unrest | 138 | -7.26 | £ 199 | 131 | 47 | | | (3.91) | (4.48) | 5,133 | 191 | | per capita. These results suggest that having an occurrence of unrest reduces GDP per capita by 1.14 (standard error = .275) in the short run. These results not only imply that social unrest is an important determinant of growth, but that these occurrences may be also correlated with political transformations characterized by developing horizontal and vertical constraints. Indeed, social unrest appears to absorb the overall effect of vertical constraints, suggesting a potential correlation between both variables. Table A1. Country units and year coverage included in the dataset | Name | ID | CoW | Carranama | Name | ID | CoW | Corromo ma | |--------------------------|---------------------------|------------|-------------------------------------|--------------------|-------------|-------------------|--------------------| | Afghanistan | AFG | 700 | $\frac{\text{Coverage}}{1789-2022}$ | Eritrea | ERI | 531 | Coverage 1900–2022 | | Albania | ALB | 339 | 1912-2022 | Estonia Estonia | EST | 366 | 1900-2022 | | | $\overline{\mathrm{DZA}}$ | 559
615 | 1912-2022 | Estoma
Eswatini | SWZ | 572 | 1916-2022 | | Angela | AGO | | | | ETH | $\frac{572}{530}$ | | | Angola | | 540 | 1900-2022 | Ethiopia | | | 1789-2022 | | Argentina | ARG | 160 | 1789–2022 | Fiji | FJI | 950 | 1900-2022 | | Armenia | ARM | 371 | 1990-2022 | Finland | FIN | 375 | 1809-2022 | | Australia | AUS | 900 | 1789-2022 | France | FRA | 220 | 1789–2022 | | Austria | AUT | 300 | 1789–1918 | Gabon | GAB | 481 | 1910-2022 | | Austria | AUT | 305 | 1919–2022 | Georgia | GEO | 372 | 1990-2022 | | Azerbaijan | AZE | 373 | 1990-2022 | German Dem. Rep. | DDR | 265 | 1949–1990 | | Baden | BDN | 267 | 1789–1871 | Germany | DEU | 255 | 1789–2022 | | Bahrain | BHR | 692 | 1900-2022 | Ghana | GHA | 452 | 1902-2022 | | Bangladesh | BGD | 771 | 1971-2022 | Greece | GRC | 350 | 1822-2022 | | Barbados | BRB | 53 | 1900-2022 | Guatemala | GTM | 90 | 1789 – 2022 | | Bavaria | BVR | 245 | 1789 - 1871 | Guinea | GIN | 438 | 1900-2022 | | Belarus | BLR | 370 | 1990-2022 | Guinea-Bissau | GNB | 404 | 1900-2022 | | Belgium | BEL | 211 | 1789 - 2022 | Guyana | GUY | 110 | 1900-2022 | | Benin | BEN | 434 | 1900-2022 | Haiti | HTI | 41 | 1789 - 2022 | | Bhutan | BTN | 760 | 1900 – 2022 | Hanover | HVR | 240 | 1789 - 1866 | | Bolivia | BOL | 145 | 1825 – 2022 |
Hesse-Darmstadt | HDM | 275 | 1789 - 1867 | | Bosnia and Herzegovina | BIH | 346 | 1992 – 2022 | Hesse-Kassel | HKS | 273 | 1789 - 1866 | | Botswana | BWA | 571 | 1900 – 2022 | Honduras | HND | 91 | 1838 – 2022 | | Brazil | BRA | 140 | 1789 – 2022 | Hungary | HUN | 310 | 1789 – 2022 | | Bulgaria | BGR | 355 | 1878 - 2022 | Iceland | ISL | 395 | 1900 – 2022 | | Burkina Faso | BFA | 439 | 1919 – 2022 | India | IND | 750 | 1789 – 2022 | | Burma/Myanmar | MMR | 775 | 1789 – 2022 | Indonesia | IDN | 850 | 1800 – 2022 | | Burundi | BDI | 516 | 1916 - 2022 | Iran | IRN | 630 | 1789 - 2022 | | Cambodia | KHM | 811 | 1900 - 2022 | Iraq | IRQ | 645 | 1920-2022 | | Cameroon | CMR | 471 | 1961 - 2022 | Ireland | IRL | 205 | 1919-2022 | | Canada | CAN | 20 | 1841 - 2022 | Israel | ISR | 666 | 1948 – 2022 | | Cape Verde | CPV | 402 | 1900 - 2022 | Italy | ITA | 325 | 1861 - 2022 | | Central African Republic | CAF | 482 | 1920 – 2022 | Ivory Coast | CIV | 437 | 1900-2022 | | Chad | TCD | 483 | 1920 – 2022 | Jamaica | $_{ m JAM}$ | 51 | 1900-2022 | | Chile | CHL | 155 | 1789 - 2022 | Japan | $_{ m JPN}$ | 740 | 1789 - 2022 | | China | CHN | 710 | 1789-2022 | Jordan | JOR | 663 | 1922-2022 | | Colombia | COL | 100 | 1789-2022 | Kazakhstan | KAZ | 705 | 1990-2022 | | Comoros | COM | 581 | 1900-2022 | Kenya | KEN | 501 | 1900-2022 | | Costa Rica | CRI | 94 | 1838-2022 | Kosovo | XKX | 347 | 1999–2022 | | Croatia | HRV | 344 | 1941–2022 | Kuwait | KWT | 690 | 1789–2022 | | Cuba | CUB | 40 | 1789–2022 | Kyrgyzstan | KGZ | 703 | 1990-2022 | | Cyprus | CYP | 352 | 1900-2022 | Laos | LAO | 812 | 1900-2022 | | Czechia | $\overline{\text{CZE}}$ | 315 | 1918–1992 | Latvia | LVA | 367 | 1920-2022 | | Czechia | CZE | 316 | 1993–2022 | Lebanon | LBN | 660 | 1918–2022 | | Dem. Rep. of the Congo | COD | 490 | 1900-2022 | Lesotho | LSO | 570 | 1910-2022 | | Denmark | DNK | 390 | 1789–2022 | Liberia | LBR | 450 | 1821–2022 | | Djibouti | DII | 522 | | | LBY | 620 | | | • | | | 1900-2022 | Libya | | | 1789–2022 | | Dominican Republic | DOM | 42 | 1789–2022 | Lithuania | LTU | $\frac{368}{212}$ | 1918-2022 | | Ecuador | ECV | 130 | 1830-2022 | Luxembourg | LUX | 212 | 1815-2022 | | Egypt
El Colvador | EGY | 651 | 1789–2022 | Madagascar | MDG | 580 | 1817-2022 | | El Salvador | SLV | 92 | 1838-2022 | Malawi | MWI | 553 | 1900-2022 | | Equatorial Guinea | GNQ | 411 | 1900-2022 | Malaysia | MYS | 820 | 1900-2022 | Table A1. Country units and year coverage included in the dataset (continued) | Name | ID | CoW | Coverage | Name | ID | CoW | Coverage | |-----------------------|-----|--------------|-------------|--------------------------|----------|--------------|-------------| | Maldives | MDV | 781 | 1900-2022 | Singapore | SGP | 830 | 1867-2022 | | Mali | MLI | 432 | 1900 - 2022 | Slovakia | SVK | 317 | 1939 – 2022 | | Malta | MLT | 338 | 1900 - 2022 | Slovenia | SVN | 349 | 1989 – 2022 | | Mauritania | MRT | 435 | 1904 – 2022 | Solomon Islands | SLB | 940 | 1900 – 2022 | | Mauritius | MUS | 590 | 1900 - 2022 | Somalia | SOM | 520 | 1900 – 2022 | | Mecklenburg Schwerin | MCL | 280 | 1789 - 1867 | South Africa | ZAF | 560 | 1900 – 2022 | | Mexico | MEX | 70 | 1789 - 2022 | South Korea | KOR | 730 | 1789 - 1905 | | Modena | MDN | 332 | 1789 - 1859 | South Korea | KOR | 732 | 1906-2022 | | Moldova | MDA | 359 | 1990 - 2022 | South Sudan | SSD | 626 | 2011 - 2022 | | Mongolia | MNG | 712 | 1911 - 2022 | South Yemen | YMD | 680 | 1900 - 1990 | | Montenegro | MNE | 341 | 1789 - 2022 | Spain | ESP | 230 | 1789 - 2022 | | Morocco | MAR | 600 | 1789 - 2022 | Sri Lanka | LKA | 780 | 1900 - 2022 | | Mozambique | MOZ | 541 | 1900 - 2022 | Sudan | SDN | 625 | 1900 - 2022 | | Namibia | NAM | 565 | 1900-2022 | Suriname | SUR | 115 | 1900-2022 | | Nepal | NPL | 790 | 1789 - 2022 | Sweden | SWE | 380 | 1789 - 2022 | | Netherlands | NLD | 210 | 1789-2022 | Switzerland | CHE | 225 | 1798-2022 | | New Zealand | NZL | 920 | 1841-2022 | Syria | SYR | 652 | 1918-2022 | | Nicaragua | NIC | 93 | 1838-2022 | Taiwan | TWN | 713 | 1900-2022 | | Niger | NER | 436 | 1922–2022 | Tajikistan | TJK | 702 | 1990-2022 | | Nigeria | NGA | 475 | 1914-2022 | Tanzania | TZA | 510 | 1914-2022 | | North Korea | PRK | 731 | 1945-2022 | Thailand | THA | 800 | 1789–2022 | | North Macedonia | MKD | 343 | 1991-2022 | The Gambia | GMB | 420 | 1900-2022 | | Norway | NOR | 385 | 1789–2022 | Timor-Leste | TLS | 860 | 1900-2022 | | Oman | OMN | 698 | 1789–2022 | Togo | TGO | 461 | 1916-2022 | | Pakistan | PAK | 770 | 1947-2022 | Trinidad and Tobago | TTO | 52 | 1900-2022 | | Panama | PAN | 95 | 1903–2022 | Tunisia | TUN | 616 | 1789–2022 | | Papal States | PPS | 327 | 1789–1860 | Turkey | TUR | 640 | 1789–2022 | | Papua New Guinea | PNG | 910 | 1900-2022 | Turkmenistan | TKM | 701 | 1990-2022 | | Paraguay | PRY | 150 | 1811-2022 | Tuscany | TSC | 337 | 1789-1860 | | Parma | PRM | 335 | 1789–1859 | Two Sicilies | TWS | 329 | 1789–1860 | | Peru | PER | 135 | 1789–2022 | Uganda | UGA | 500 | 1900-2022 | | Philippines | PHL | 840 | 1900-2022 | Ukraine | UKR | 369 | 1990-2022 | | Poland | POL | 290 | 1789–2022 | United Arab Emirates | ARE | 696 | 1971–2022 | | Portugal | PRT | 235 | 1789–2022 | United Kingdom | GBR | 200 | 1789–2022 | | Qatar | QAT | 694 | 1900-2022 | United States of America | USA | 2 | 1789–2022 | | Republic of Vietnam | VDR | 817 | 1802–1975 | Uruguay | URY | 165 | 1825-2022 | | Republic of the Congo | COG | 484 | 1903–2022 | Uzbekistan | UZB | 704 | 1789–2022 | | Romania | ROU | 360 | 1789–2022 | Vanuatu | VUT | 935 | 1900-2022 | | Russia | RUS | 365 | 1789–2022 | Venezuela | VEN | 101 | 1789–2022 | | Rwanda | RWA | 517 | 1916–2022 | Vietnam | VNM | 816 | 1945–2022 | | Sao Tome and Principe | STP | 403 | 1900-2022 | Würtemberg | WRG | 271 | 1789–1871 | | Saudi Arabia | SAU | 670 | 1789–2022 | Yemen | YEM | 678 | 1789–1989 | | Saxony | SXN | 269 | 1789–2022 | Yemen | YEM | 679 | 1990–2022 | | Senegal | SEN | 433 | 1904–2022 | Zambia | ZMB | 551 | 1911-2022 | | Serbia | SRB | 345 | 1804-2022 | Zanzibar | ZZB | 511 | 1856–1964 | | Seychelles | SYC | $545 \\ 591$ | 1903-2022 | Zimbabwe | ZWE | $511 \\ 552$ | 1900-2022 | | Sierra Leone | SLE | 451 | 1903-2022 | ышрарме | Z1 VV 15 | 992 | 1900-2022 | | DICITA LEUIIE | מחה | 401 | 1300-2022 | | | | |